Answer : The net ionic equation will be,

Explanation :
In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The given balanced ionic equation will be,

The ionic equation in separated aqueous solution will be,

In this equation,
are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be,

Answer:
a) [Tris0] : [Tris] = 1 : 100
b) Range = 7.1 to 9.1
Explanation:
a) Calculation of ratio of the basic and the acidic forms of tris
pH of a buffer is calculate using Henderson-Hasselbalch equation

Conjugate acid of Tris dissociated as

For tris,
Salt or Basic form = tris0
Acid or Acidic form = Tris
pKa = 8.1
pH = 6.1





[Tris0] : [Tris] = 1 : 100
b) Range of Tris
Range of any buffer is:
From (pKa -1) to (pKa+1)
So, range of Tris is:
From (8.1 - 1) to (8.1 +1)
or from 7.1 to 9.1
<span>The ammonia molecules have weaker inter molecular bonds then the hydrogen and nitrogen, this means that the ammonia condensed at a lower temperature so will be a liquid that will be separated from the reaction, while the nitrogen and hydrogen remain as gases so are easy are recycle back into the reacting chamber.</span>
Use formula: Initial Pressure x Initial Volume/Initial temperature = Final pressure x Final Volume/Final Temperature => 17.15L