Answer:
Step-by-step explanation:
The model fo the shell is given by the following equation of equilibrium:

This first-order differential equation has separable variables, which are cleared herein:

The solution of this integral is:
![t = -\frac{m}{2b}\cdot \left[\tan^{-1} \left(\frac{v}{\sqrt{\frac{m\cdot g}{b} } }\right) - \tan^{-1} \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } }\right)\right]](https://tex.z-dn.net/?f=t%20%3D%20-%5Cfrac%7Bm%7D%7B2b%7D%5Ccdot%20%5Cleft%5B%5Ctan%5E%7B-1%7D%20%5Cleft%28%5Cfrac%7Bv%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%5Cright%29%20-%20%5Ctan%5E%7B-1%7D%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%5Cright%29%5Cright%5D)

![\frac{v}{\sqrt{\frac{m\cdot g}{b} } }=\tan \left[-\frac{2\cdot b\cdot t}{m} + \tan^{-1}\left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\right]](https://tex.z-dn.net/?f=%5Cfrac%7Bv%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%3D%5Ctan%20%5Cleft%5B-%5Cfrac%7B2%5Ccdot%20b%5Ccdot%20t%7D%7Bm%7D%20%2B%20%5Ctan%5E%7B-1%7D%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%5Cright%5D)
![v = \sqrt{\frac{m\cdot g}{b} } \left [\frac{\tan \left(-\frac{2\cdot b \cdot t}{m} \right)+ \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)}{1 - \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\cdot \tan \left(-\frac{2\cdot b \cdot t}{m} \right) }\right]](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%5Cleft%20%5B%5Cfrac%7B%5Ctan%20%5Cleft%28-%5Cfrac%7B2%5Ccdot%20b%20%5Ccdot%20t%7D%7Bm%7D%20%20%5Cright%29%2B%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%7D%7B1%20-%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%5Ccdot%20%5Ctan%20%5Cleft%28-%5Cfrac%7B2%5Ccdot%20b%20%5Ccdot%20t%7D%7Bm%7D%20%20%5Cright%29%20%7D%5Cright%5D)
I hope this helps you
4/5-1/3
(4.3/5.3)-(1.5/3.5)
12/15-5/15
7/15
Ok so let's start with what we know- the shortest piece is 8 inches so there's one length... then the middle piece is 6 inches longer than the shortest (6+ 8) so the middle piece would be 14 inches long. To find the last piece we can add up the other two pieces we know (14+8) which would be 22 and subtract that from how long the whole sandwich is (59-22) which would be 37 inches long. So in the end he shortest piece would be 8 inches, the middle 14 inches and the longest 37 inches.
A.
For Deshaun: $75 - $10x
For Ann: $90 - $15x
B.
$75 - $10x = $90 - $15x
<em>I believe this is right, check over to make sure. I may be wrong, and sorry if I am.</em>
The equation is <span>y = -x + 2</span>