This composite figure consists of a right triangle and semicircle
The area of a triangle is: 1/2(bh)
The area of a semicircle is 1/2(pi)(r²)
Plug in the values:
1/2( 12)(8)
=48
1/2(3.14)(4²)
=25.12
25.12+48=73.12
Hope this helped :)
Answer:
(-3, -3)
Step-by-step explanation:
1.) Rewrite the second equation so 3y is on one side of the equation:
3y=6+5x
2.) Substitute the given value of 3y (replacing 3y with 6+5x, since we know they equal each other) into the equation 17x=-60-3y
Should end up with this:
17x=-60-(6+5x)
3.) Solve 17x=-60-(6+5x)
Calculate Difference: 17x=-66-5x
Combine Like Terms: 22x = -66
Divided both sides by 22 to isolate and solve for x: -3
So We know x=-3, now we got to find the y value. We can use either the first or second equation to find y value, so lets use the second.
3y=6+5x
1.) We know that x=-3, so we can simply substitute x in the equation
3y=6+5x with -3
3y=6+5(-3)
2.) Solve 3y=6+5(-3)
Combine Like Term: 3y=6+-15
Combine Like Term Even More: 3y= -9
Divide by 3 on both sides to isolate and solve for y: y=-3
So now we know y=-3 and once again we know x=-3, so if we format that
(-3,-3)
^ ^
x y
![\displaystyle\lim_{n\to\infty}\sqrt[n]{\left|\left(\frac{5n+15}{2n-1}\right)^n\right|}=\lim_{n\to\infty}\frac{5n+15}{2n-1}=\dfrac52](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csqrt%5Bn%5D%7B%5Cleft%7C%5Cleft%28%5Cfrac%7B5n%2B15%7D%7B2n-1%7D%5Cright%29%5En%5Cright%7C%7D%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B5n%2B15%7D%7B2n-1%7D%3D%5Cdfrac52)
Since this limit exceeds 1, the series diverges.
Answer:
800 ft above sea level
Step-by-step explanation: