Answer:
B
Explanation:
the gravitational force is a big play.
Answer:
b) 49.48% C, 5.19% H, 28.85% N, and 16.48% O
Explanation:
we find the mass for each element in one mole by multiplying the number of atoms in one molecule with the atomic mass
mC=8Ac=8*12=96g
mH=10AH=10*1=10g
mN=4AN=4*14=56g
mO=2AO=2*16=32g
by adding the masses together we find the molar mass of the molecule
M=mC+nH+mN+mO=96+10+56+32=194g/mole
we apply the rule of threes to find the percentage of each element
194g..96gC..10gH...56gN....32gO
100g....a...........b...........c.............d
a=(100*96)/194=49.48%C
b=(100*10)/194=5.19%H
c=(100*56)/194=28.85%N
d=(100*32)/194=16.48%O
Molarity of Ag+ is less than the molar solubility thus ppt will not occur.
Balanced reaction-:
<h3>2AgNO3(aq)+K2CrO4(aq)→Ag2CrO4(s)+2KNO3(aq)</h3>
Moles of AgNO3=mass(g)molar mass (g/mol) =2.7×10−5g / 169.86 gmol
=1.589⋅10^−7 mol
Molarity of Ag+=moles of solute(L)=1.589⋅10−7 mol0.015 L=1.059⋅10−5M
Ksp of Ag2CrO4
=[Ag+]2[CrO42−]
1.2⋅10−12=[2s]2[s]
4s3=1.2⋅10−12
s=6.69⋅10−5 M
Molarity of Ag+ is less than the molar solubility thus ppt will not occur.
<h3>What is the molarity calculation formula?</h3>
The volume of solvent required to dissolve the provided solute is multiplied by the ratio of the moles of the solute whose molarity has to be computed. (M=frac{n}{V}) The molality of the solution that needs to be computed in this case is M. n is the solute's molecular weight in moles.
Learn more about Molarity:
brainly.com/question/8732513
#SPJ4
72.71 . simple google search, you shouldnt waste points
1 cm of copper. This is because copper atoms are heavier than aluminum atoms.