Answer:
1.65 L
Explanation:
The equation for the reaction is given as:
A + B ⇄ C
where;
numbers of moles = 0.386 mol C (g)
Volume = 7.29 L
Molar concentration of C = 
= 0.053 M
A + B ⇄ C
Initial 0 0 0.530
Change +x +x - x
Equilibrium x x (0.0530 - x)
![K = \frac{[C]}{[A][B]}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BC%5D%7D%7B%5BA%5D%5BB%5D%7D)
where
K is given as ; 78.2 atm-1.
So, we have:
![78.2=\frac{[0.0530-x]}{[x][x]}](https://tex.z-dn.net/?f=78.2%3D%5Cfrac%7B%5B0.0530-x%5D%7D%7B%5Bx%5D%5Bx%5D%7D)


Using quadratic formula;

where; a = 78.2 ; b = 1 ; c= - 0.0530
=
or 
=
or 
= 0.0204 or -0.0332
Going by the positive value; we have:
x = 0.0204
[A] = 0.0204
[B] = 0.0204
[C] = 0.0530 - x
= 0.0530 - 0.0204
= 0.0326
Total number of moles at equilibrium = 0.0204 + 0.0204 + 0.0326
= 0.0734
Finally, we can calculate the volume of the cylinder at equilibrium using the ideal gas; PV =nRT
if we make V the subject of the formula; we have:

where;
P (pressure) = 1 atm
n (number of moles) = 0.0734 mole
R (rate constant) = 0.0821 L-atm/mol-K
T = 273.15 K (fixed constant temperature )
V (volume) = ???

V = 1.64604
V ≅ 1.65 L
Answer:
So, if a rock is changed or broken but stays where it is, it is called weathering. If the pieces of weathered rock are moved away, it is called erosion.
I have completed the problem
False. Because gas to a liquid is called condensation
Answer:
5.66 %.
Explanation:
<em>mass percent is the ratio of the mass of the solute to the mass of the solution multiplied by 100.</em>
<em />
<em>mass % = (mass of solute/mass of solution) x 100.</em>
<em></em>
mass of potassium nitrite = 30.0 g,
mass of the solution = mass of water + mass of potassium nitrite = 500.0 g + 30.0 g = 530.0 g.
<em>∴ mass % = (mass of solute/mass of solution) x 100</em> = (30.0 g/530.0 g) x 100 = <em>5.66 %.</em>