Answer:
a = 6.1 m / s²
Explanation:
For this kinematics exercise, to solve the exercise we must set a reference system, we place it in the initial position of the fastest vehicle
Let's find the relative initial velocity of the two vehicles
v₀ = v₀₂ - v₀₁
v₀ = 25.4 - 13.6
v₀ = 11.8 m / s
the fastest vehicle
x = v₀ t + ½ a t²
The faster vehicle has an initial speed relative to the slower vehicle, therefore it is as if the slower vehicle were stopped, so the distance that must be traveled in a fast vehicle to reach this position is
x = 11.4 m
let's use the expression
v² = v₀² - 2 a x
how the vehicle stops v = 0
a = v₀² / 2x
a =
a = 6.1 m / s²
this velocity is directed to the left
Answer:
3.53 N/C
Explanation:
Electric field = F / q where F is the force in N and q is charge on the electron
F = mass of an electron × a ( acceleration in m/s)
using equation of motion to solve for the acceleration
s ( distance ) = ut + 0.5 at² since the electron is starting from rest then ut = 0
2s / t² = a
F = me × ( 2s / t²)
E electric field = me × ( 2s / t²) / q = me × 2s / ( t² × q)
me, mass of an electron = 9.11 × 10⁻³¹ kg
E = (9.11 × 10⁻³¹ kg × 2 × 0.038 m) / ( (3.5 × 10⁻⁷s)² × 1.6 × 10⁻¹⁹ C) = 0.0353 × 10² N/C = 3.53 N/C
Answer:
Orbital Time Period is 24 years
Explanation:
This can be explained by the definition of time period.
Time period can be defined as the time taken by an object to complete one cycle, here, time taken to complete one revolution.
Also, we know that an extra solar planet which is also called as an exo planet is that planet which is outside our solar system and orbits any star other than our sun. The system in consideration is extra solar system with a single planet.
Therefore, the time taken by the parent star to move about its mass center is the orbital time period that is 24 years.
Answer:

Explanation:
Since, as we know, the potential difference 'ΔV' is the difference of between the Potential energy per unit charge U/qo at one point 'B' to Potential energy per unit charge at other point 'A'. It so happens when a test charge 'qo' moves from point A to B, the potential difference becomes the change of potential energy of the system, i.e.
Your answer is going to be 0 degrees Kelvin!