Explanation:
It is given that, the position of a particle as as function of time t is given by :

Let v is the velocity of the particle. Velocity of an object is given by :

![v=\dfrac{d[(8t+9)i+(2t^2-8)j+6tk]}{dt}](https://tex.z-dn.net/?f=v%3D%5Cdfrac%7Bd%5B%288t%2B9%29i%2B%282t%5E2-8%29j%2B6tk%5D%7D%7Bdt%7D)

So, the above equation is the velocity vector.
Let a is the acceleration of the particle. Acceleration of an object is given by :

![a=\dfrac{d[8i+4tj+6k]}{dt}](https://tex.z-dn.net/?f=a%3D%5Cdfrac%7Bd%5B8i%2B4tj%2B6k%5D%7D%7Bdt%7D)

At t = 0, 

Hence, this is the required solution.
Answer:
At a deceleration of 60g, or 60 times the acceleration due to gravity a person will travel a distance of 0.38 m before coing to a complete stop
Explanation:
The maximum acceleration of the airbag = 60 g, and the duration of the acceleration = 36 ms or 36/1000 s or 0.036 s
To find out how far (in meters) does a person travel in coming to a complete stop in 36 ms at a constant acceleration of 60g
we write out the equation of motion thus.
S = ut + 0.5at²
wgere
S = distance to come to complete stop
u = final velocoty = 0 m/s
a = acceleration = 60g = 60 × 9.81
t = time = 36 ms
as can be seen, the above equation calls up the given variable as a function of the required variable thus
S = 0×0.036 + 0.5×60×9.81×0.036² = 0.38 m
At 60g, a person will travel a distance of 0.38 m before coing to a complete stop
Answer:
The height at which the object is moved is 10 meters.
Explanation:
Given that,
Force acting on the object, W = F = 490 N
The gravitational potential energy, P = 4900 J
We need to find the height at which the object is moved. We know that the gravitational potential energy is possessed due to its position. It is given by :

So, the height at which the object is moved is 10 meters. Hence, this is the required solution.
Because a sxientific law is always applies under the same conditions, and implies that there is a causal relationship involving its elements. And so that is why gravity <span>always applies under the same conditions, and implies that there is a causal relationship involving its elements.</span>
Answer:
The answer is below
Explanation:
A diver works in the sea on a day when the atmospheric pressure is 101 kPa. The diver uses compressed air to breathe under water. 1700 litres of air from the atmosphere is compressed into a 12-litre gas cylinder. The compressed air quickly cools to its original temperature. Calculate the pressure of the air in the cylinder.
Solution:
Boyles law states that the volume of a given gas is inversely proportional to the pressure exerted by the gas, provided that the temperature is constant.
That is:
P ∝ 1/V; PV = constant
P₁V₁ = P₂V₂
Given that P₁ = initial pressure = 101 kPa, V₁ = initial volume = 1700 L, P₂ = cylinder pressure, V₂ = cylinder volume = 12 L. Hence:
P₁V₁ = P₂V₂
100 kPa * 1700 L = P₂ * 12 L
P₂ = (100 kPa * 1700 L) / 12 L
P₂ = 14308 kPa