Split the operation in two parts. Part A) constant acceleration 58.8m/s^2, Part B) free fall.
Part A)
Height reached, y = a*[t^2] / 2 = 58.8 m/s^2 * [7.00 s]^2 / 2 = 1440.6 m
Now you need the final speed to use it as initial speed of the next part.
Vf = Vo + at = 0 + 58.8m/s^2 * 7.00 s = 411.6 m/s
Part B) Free fall
Maximum height, y max ==> Vf = 0
Vf = Vo - gt ==> t = [Vo - Vf]/g = 411.6 m/s / 9.8 m/s^2 = 42 s
ymax = yo + Vo*t - g[t^2] / 2
ymax = 1440.6 m + 411.6m/s * 42 s - 9.8m/s^2 * [42s]^2 /2
ymax = 1440.6 m + 17287.2m - 8643.6m = 10084.2 m
Answer: ymax = 10084.2m
Average speed = (total distance covered) / (time to cover the distance)
Total distance covered = (9.5m + 3.5m + 15m) = 28 meters
Time to cover the distance = 43 seconds
Average speed = (28 meters) / (43 seconds)
Average speed = 0.65 meters/second
<span>The potential of electrons in a circuit can be increased by the action of a battery.
</span><span>♡♡Hope I helped!!! :)♡♡
</span>
Answer: 
Explanation:
Given
Mass of water is 
mass of ice is 
Latent heat of fusion 
The heat capacity of water is 
Suppose water is at
and it reaches to
to melt the ice
the heat released by water must be equivalent to heat absorbed by the ice
