The formula for velocity is distance divided by time, or d/t. The distance is 500 km and the time is 1.2 hours. 500/1.2 is 416.6 km/hr.
Answer:
film is at distance of 3.07 cm from lens
Explanation:
Given data
focal length = 3.06 cm
distance = 10.4 m = 1040 cm
to find out
How far must the lens
solution
we apply here lens formula that is
1/f = 1/p + 1/q
here f = 3.06 and p = 1040 so we find q
1/f = 1/p + 1/q
1/3.06 = 1/1040 + 1/q
1/ q = 0.3258
q = 3.0690 cm
so film is at distance of 3.07 cm from lens
Answer:
Explanation 118 = (1/2) * 0.15 * v² 118 = 0.075 * v² v² = 1573.33 m/s ... since KE = m/2*V^2 , then : V = √2KE/m = √20*118/1.5 = 39.67 m//sec ( 142.8 km/h ; 88.75 mph).:
Solution :
Let kg
m/s
Let and are the speeds of the disk and after the collision.
So applying conservation of momentum in the y-direction,
Therefore, the disk 2 have greater velocity and hence more kinetic energy after the collision.
Now applying conservation of momentum in the x-direction,
m/s
So,
= 4.33 m/s
Therefore, speed of the disk 2 after collision is 4.33 m/s