In Newton's cannonball experiment, if the velocity is equal to the orbital velocity then the cannonball will stay in Orbit.
Newtons cannonball experiment stated that the distance that a cannonball will travel, before being drawn into the Earth by the forces of gravity, is dependent on the initial velocity.
Therefore, if the cannonball is launched at a velocity that matches the orbital velocity, then it will not be able to be drawn in by gravity due to the Earth moving away from the cannonball at the same speed at which the cannonball itself is falling.
This means that the cannonball will continue to fall without reaching the Earth, therefore staying in orbit, much like that of the moon or planets around the sun.
To learn more visit:
brainly.com/question/22360485?referrer=searchResults
Answer:
Limestone is a sedimentary rock
Explanation:
1. Limestone is a carbonate sedimentary rock made up of calcite(CaCO₃).This rock type forms calcareous shells and tests of organisms that was deposited in a sedimentary basin.
Limestone is used in building and construction works. It also finds application in chemical industries.
2. Over a long period of time, we would take a look at the rock "limestone" through the rock cycle.
Limestone being a sedimentary rock would be converted to marble, a metamorphic rock if subjected to metamorphic conditions over an extensive period of time. With series of metamorphic transformation, marble can grade to higher metamorphic facies of rocks as it combines with other minerals in the crust. The minerals would eventually change and as the changed rock approaches its melting temperature, melt would result.
From the other spectrum, limestone can be weathered if subjected extensively to denudation forces such as wind, water and glaciation. Water is more potent for the chemical weathering of limestone. Limestone would easily and readily dissolve in it over a long period of time.
If the kinetic energy of each ball is equal to that of the other,
then
(1/2) (mass of ppb) (speed of ppb)² = (1/2) (mass of gb) (speed of gb)²
Multiply each side by 2:
(mass of ppb) (speed of ppb)² = (mass of gb) (speed of gb)²
Divide each side by (mass of gb) and by (speed of ppb)² :
(mass of ppb)/(mass of gb) = (speed of gb)²/(speed of ppb)²
Take square root of each side:
√ (ratio of their masses) = ( 1 / ratio of their speeds)²
By trying to do this perfectly rigorously and elegantly, I'm also
using up a lot of space and guaranteeing that nobody will be
able to follow what I have written. Let's just come in from the
cold, and say it the clear, easy way:
If their kinetic energies are equal, then the product of each
mass and its speed² must be the same number.
If one ball has less mass than the other one, then the speed²
of the lighter one must be greater than the speed² of the heavier
one, in order to keep the products equal.
The pingpong ball is moving faster than the golf ball.
The directions of their motions are irrelevant.
To solve this problem we will use the concepts related to energy conservation. Both potential energy, such as rotational and linear kinetic energy, must be conserved, and the gain in kinetic energy must be proportional to the loss in potential energy and vice versa. This is mathematically


Where,
m = mass
v = Tangential Velocity
= Angular velocity
I = Moment of Inertia
g = Gravity
Replacing the value of Inertia in a Disk and rearranging to find h, we have



Replacing,


Therefore the height of the inclined plane is 5.6m