C or A could be the answer
Answer:
127
Step-by-step explanation:
We started at 7
We keep going up 3
multiply
Now add
at the 40th term
Answer:
24 units
Step-by-step explanation:
Given is a circle with two chord BE and CD
BE and CD intersect at A
By circle chords intersection theorem we have
DA*AC = EA*AB
i.e. 8(15) = 5(AB)
Divide by 5 both the sides
AB =8(15)/5 = 8(3) = 24 units
Verify:
Let us check now whether chord intersection theorem is satisfied.
DA*AC = 8(15) = 120
EA*AB = 5(24) = 120
Since these two equal, we verify that answer is right.
Answer:
m∠BCD = 90°
∠BCD is a right angle
Step-by-step explanation:
<em>If a ray bisects an angle, that means it divides the angle into two equal parts in measure</em>
∵ Ray CE bisects ∠BCD
→ Means divide it into two angles BCE and ECD which equal in measures
∴ m∠BCE = m∠ECD =
m∠BCD
∵ m∠BCE = 3x - 6
∵ m∠ECD = 2x + 11
→ Equate them to find x
∴ 3x - 6 = 2x + 11
→ Add 6 to both sides
∵ 3x - 6 + 6 = 2x + 11 + 6
∴ 3x = 2x + 17
→ Subtract 2x from both sides
∵ 3x - 2x = 2x - 2x + 17
∴ x = 17
∵ m∠BCE =
m∠BCD
→ Substitute x in the measure of ∠BCE to find it, then use it to
find m∠BCD
∵ m∠BCE = 3(17) - 6 = 51 - 6
∴ m∠BCE = 45°
∵ 45 =
m∠BCD
→ Multiply both sides by 2
∴ 90 = m∠BCD
∴ m∠BCD = 90°
→ The measure of the acute angle is less than 90°, the measure of
the obtuse angle is greater than 90°, and the measure of the
right angle is 90°
∴ ∠BCD is a right angle
We first need to factorize (if possible) the denominators:
we can see that

as 2 and 5 are two numbers whose sum is 7 and product is 10.
Similarly, we can see that

as 2 and 3 are two numbers whose sum is 5 and product is 6.
Thus, the expression is:

.
Now to make the denominators equal, but to also keep them as small as possible, the common denominator must be (p+3)(p+2)(p+5).
Answer: (p+3)(p+2)(p+5).