Acceleration=9.81m/s^2
initial velocity=0m/s
time=.28s
We have to find final velocity.
The equation we use is
Final velocity=initial velocity+acceleration x time
Vf=0m/s+(9.81m/s^2)(.28s)
Vf=2.7468m/s
We would round this to:
Vf (final velocity)=2.7m/s
Answer:
Their bodies don't conduct electricity like we do.
Explanation:
Initial speed = 2√10 m/s
<h3>Further explanation </h3>
Linear motion consists of 2: constant velocity motion with constant velocity and uniformly accelerated motion with constant acceleration
An equation of uniformly accelerated motion
V = vo + at
Vt² = vo² + 2a (x-xo)
x = distance on t
vo / vi = initial speed
vt / vf = speed on t / final speed
a = acceleration
vf=20 m/s
d = 60 m
a = 3 m/s²

Answer:
both experience forces or at least a force
Explanation:
it would go in the direction the other object
(second object, the one that crashed) was going
si if going right then right if left then left
plus or minus
Answer:
16∠45° Ω
Explanation:
Applying,
Z = V/I................... Equation 1
Where Z = Impedance, V = Voltage output, I = current input.
Given: V = 120cos(10t+75°), = 120∠75°, I = 7.5cos(10t+30) = 7.5∠30°
Substitute these values into equation 1
Z = 120cos(10t+75°)/7.5cos(10t+30)
Z = 120∠75°/ 7.5∠30°
Z = 16∠(75°-30)
Z = 16∠45° Ω
Hence the impedance of the linear network is 16∠45° Ω