Most likely the answer is B.
The normal force is always (underline, bold) is always perpendicular to the surface an object is sitting on. If the object is on an inclined plane, then the normal will not be vertical but it will be perpendicular to the angle of the incline.
The diagram below (left) shows a normal force (GH) that is not vertical, but it is perpendicular to the surface. The object on the right is the more usual normal a mass on a table top.
The vertical line on the right is the normal and it points up.
Based on Newton's second law of motion, the net force applied to an object is equal to the product of the mass of the object and the acceleration it experiences. That is,
F = ma
If we are to assume that the net force is constant and that the mass is increased, the acceleration should therefore decrease in order to make constant the value at the right-hand side of the equation.
Answer:
potential energy increases.
Explanation:
The potential energy between the two charged particles is given by
U = k Q q / r
If they are very far apart then r tends to infinity and the potential energy is zero.
If they come closer then the potential energy between the two charged particles increases.
Thus, the potential energy increases.
If an equation is dimensionally correct, it does not mean that the equation must be true. On the other hand, when the equation is dimensionally correct, the equation cannot be true. Dimensional analysis is a technique used to check whether a relationship is correct