The correct response is B .
Answer:
t = 1.4[s]
Explanation:
To solve this problem we must use the principle of conservation of linear momentum, which tells us that momentum is conserved before and after applying a force to a body. We must remember that the impulse can be calculated by means of the following equation.

where:
P = impulse or lineal momentum [kg*m/s]
m = mass = 50 [kg]
v = velocity [m/s]
F = force = 200[N]
t = time = [s]
Now we must be clear that the final linear momentum must be equal to the original linear momentum plus the applied momentum. In this way we can deduce the following equation.

where:
m₁ = mass of the object = 50 [kg]
v₁ = velocity of the object before the impulse = 18.2 [m/s]
v₂ = velocity of the object after the impulse = 12.6 [m/s]
![(50*18.2)-200*t=50*12.6\\910-200*t=630\\200*t=910-630\\200*t=280\\t=1.4[s]](https://tex.z-dn.net/?f=%2850%2A18.2%29-200%2At%3D50%2A12.6%5C%5C910-200%2At%3D630%5C%5C200%2At%3D910-630%5C%5C200%2At%3D280%5C%5Ct%3D1.4%5Bs%5D)
Answer:
H = 5 m
Explanation:
As the person leaves the slide horizontally so the time taken by the person to hit the water is given as

so we can find the vertical velocity by which person will hit the water using kinematics



now the speed of the person at the end of the slide is given as



now by energy conservation we can find the initial height




Answer: Chromosphere hope this helps :)