1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadusha1986 [10]
3 years ago
13

A stunt driver rounds a banked, circular curve. The driver rounds the curve at a high, constant speed, such that the car is just

on the verge of skidding to the outside of the curve. A front view of a car driving on a banked curve. The cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car. Which forces are directly responsible for producing the car’s centripetal acceleration? Coriolis force centripetal force frictional force normal force gravitational force
Physics
1 answer:
bagirrra123 [75]3 years ago
5 0

Answer: C

Frictional force

Explanation:

The description of the question above is an example of a circular motion.

For a car travelling in a curved path, the frictional force between the tyres and the road surface will provide the centripetal force.

Since the road is banked, and the cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car, for cornering the banked road, the car will not rely only on the frictional force.

Therefore, the correct answer is option C - the frictional force.

You might be interested in
A physics student throws a softball straight up into the air. The ball was in the air for a total of 3.56 s before it was caught
meriva

Answer:

The initial velocity of the softball is 14.711 meters per second.

Explanation:

This is a case of an object which experiments a free fall, that is, an uniform accelerated motion due to gravity and in which effects from air friction and Earth's rotation can be neglected.

From statement we must understand that the student threw the softball upwards and it is caught at original position 3.56 seconds later. Initial and final heights, time and gravitational acceleration are known and initial speed is unknown. The following equation of motion is used:

y = y_{o} + v_{o}\cdot t + \frac{1}{2}\cdot g \cdot t^{2} (Eq. 1)

Where:

y_{o} - Initial height of the softball, measured in meters.

y - Final height of the softball, measured in meters.

v_{o} - Initial velocity of the softball, measured in meters per second.

t - Time, measured in seconds.

g - Gravitational acceleration, measured in meters per square second.

If we know that y = y_{o}, t = 3.56\,s and g = -9.807\,\frac{m}{s^{2}}, the initial velocity of the softball is:

v_{o}\cdot (3\,s)+\frac{1}{2}\cdot (-9.807\,\frac{m}{s^{2}} )\cdot (3\,s)^{2} = 0

3\cdot v_{o} -44.132\,m= 0

v_{o} = 14.711\,\frac{m}{s}

The initial velocity of the softball is 14.711 meters per second.

8 0
3 years ago
Explain how this happens?
grandymaker [24]

Answer:

When the polythene rod is rubbed with the woolen cloth, static electric charges move from the cloth and into the rod. The rod becomes negatively charged as negative charges move from the cloth and into the rod leaving the cloth positively charged as well.

5 0
3 years ago
A person travels by car from one city to another with different constant speeds between pair of cities. She drives for 36 min at
Softa [21]

 Change minutes to hrs, divide by 60:
30 min = .50 hrs
45 min = .75 hrs
12 min = .20 hrs
----------------
total + 1.45 hrs, total travel time
:

let a = average speed for the trip
:
Write a dist equation, dist = speed * time
:
80(.5) + 100(.20) + 40(.75) = 1.45a
40 + 20 + 30 = 1.45a
90 = 1.45a
a =
a = 62.069 km/h, for the entire trip
and
90 km is the total distance 

3 0
3 years ago
A 1000-kg car is moving at 30 m/s around a horizontal unbanked curve whose diameter is 0.20 km. What is the magnitude of the fri
omeli [17]

Answer:

4500 N

Explanation:

When a body is moving in a circular motion it will feel an acceleration directed towards the center of the circle, this acceleration is:

a = v^2/r

where v is the velocity of the body and r is the radius of the circumference:

Therefore, a body with mass m, will feel a force f:

f = m v^2/r

Therefore we need another force to keep the body(car) from sliding, this will be given by friction, remember that friction force is given a the normal times a constant of friction mu, that is:

fs = μN = μmg

The car will not slide if     f = fs,   i.e.

fs = μmg =  m v^2/r

That is, the magnitude of the friction force must be (at least) equal to the force due to the centripetal acceleration

fs = (1000 kg)  * (30m/s)^2 / (200 m) = 4500 N

7 0
3 years ago
Read 2 more answers
The__ of friction is a number that represents the resistance to sliding
Tresset [83]

Answer:

B. coefficient

Explanation:

i dont have to explain right?

3 0
3 years ago
Other questions:
  • A man stands on the roof of a building of height 13.0m and throws a rock with a velocity of magnitude 33.0m/s at an angle of 25.
    14·1 answer
  • Directions: WRITE a summary of the Newton’s Laws of Motion reading.
    11·1 answer
  • A double-slit arrangement produces interference fringes for sodium light (λ = 589 nm) that are 0.48° apart. What is the angular
    12·2 answers
  • Which part of the electromagnetic spectrum generally gives us our best views of stars forming in dusty clouds?
    9·1 answer
  • What is the difference in electrical potential energy between two places in an electric field?
    14·1 answer
  • A particle with charge − 3.74 × 10 − 6 C is released at rest in a region of constant, uniform electric field. Assume that gravit
    7·1 answer
  • You have 750 g of water at 10°C in a large insulated beaker. How much boiling water at 100°C must you add to this beaker so that
    7·1 answer
  • A 15.0 cm tall object is placed 20.0 cm from a converging lens with a 10.0 cm focal length. Where is the image located?
    11·1 answer
  • Plz help me im really confused. The questions are in the second pic and the vehicles are in the first the fetures are in the las
    8·1 answer
  • The 3kg object in figure is released from rest at height of on a curved frictionless ramp. at the foot of the ramp is a spring o
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!