Answer:
Approximately
.
Explanation:
Let
denote the gravitational constant. (
.)
Let
and
denote the mass of two objects separated by
.
By Newton's Law of Universal Gravitation, the gravitational attraction between these two objects would measure:
.
In this question:
is the mass of the moon, while
is the mass of the water. The two are
apart from one another.
Important: convert the unit of
to standard units (meters, not kilometers) to reflect the unit of the gravitational constant
.
.
.
Answer:
20N
Explanation:
Given parameters:
Work done = 200J
Distance moved = 10m
Unknown:
Amount of force applied =?
Solution:
Work done is the force applied on a body to move it in the direction of the force.
Work done = force x distance
The unit of work done is in joules
Since the unknown is force, we make it the subject of the expression;
Force =
Force =
= 20N
Answer:
I’m pretty sure the answer is distance
Explanation:
Hope this helps! Sorry if it’s wrong.
Answer:
D = 30.625 m
Explanation:
given,
Speed of the climber = 1.3 m/s
time = 2.5 s
acceleration due to gravity = 9.8 m/s²
initial speed of the kit = 1.3 m/s
velocity of the kit after 2.5 s
using equation of motion
v = u + a t
v = 1.3 + 9.8 x 2.5
v = 25.8 m/s
distance travel by the kit in 2.5 s
v² = u² + 2 g h
25.8² = 1.3² + 2 x 9.8 x h
19.6 h = 663.95
h = 33.875 m
distance travel by the rock climber in 2.5 s
distance = speed of climber x time
h' = 1.3 x 2.5
h' = 3.25 m
Distance between kit and rock climber
D = h - h'
D = 33.875 - 3.25
D = 30.625 m
The kit is 30.625 m below climber.
Their different just put because their different