<span>If the crystal pattern for halite expanded in every direction, four chloride ions would surround each sodium ion</span>
Answer:
Neither
Explanation:
Kyle would gain potential energy and lose kinetic energy
Answer: Most of the stars in the universe are main sequence stars — those converting hydrogen into helium via nuclear fusion. A main sequence star may have a mass between a third to eight times that of the sun and eventually burn through the hydrogen in its core. Over its life, the outward pressure of fusion has balanced against the inward pressure of gravity. Once the fusion stops, gravity takes the lead and compresses the star smaller and tighter.
Temperatures increase with the contraction, eventually reaching levels where helium is able to fuse into carbon. Depending on the mass of the star, the helium burning might be gradual or might begin with an explosive flash.
Bone age : 22,920 years
<h3>Further explanation</h3>
Given
Nt = 2.5 g C-14
No = 40 g
half-life = 5730 years
Required
time of decay
Solution
General formulas used in decay:

t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Input the value :

Answer: (a) Neon, Nitrogen; (b) Neon, Nitrogen; (c) Neon is lower than Nitrogen; (d) It doesn't affect;
Explanation: The kinetic-molecular theory studies the behavior of particles under pre-determinated situation. In cases of gases, the particles moving around colliding with each other and the walls of the container, without loss of energy. In the case in question, all the parameters are the same (same temperature, volume and pressure), except for the gases, which has different molar masses. In this sense, Neon has lower average speed due to its molar mass being higher, which means, its particles moves slower for being heavier. Related to pressure, as velocity is lower, it collides less with the walls of the tank, and so pressure is lower. For density, it doesn't affect the behavior of the system nor the kinetic energy.