1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
2 years ago
10

A 2.0-kg block slides on a rough horizontal surface. A force (magnitude P = 4.0 N) acting parallel to the surface is applied to

the block. The magnitude of the block's acceleration is 1.2 m/s2. If P is increased to 5.0 N, determine the magnitude of the block's
Physics
1 answer:
irinina [24]2 years ago
8 0

When the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².

<h3>Frictional force between the block and the horizontal surface</h3>

The frictional force between the block and the horizontal surface is determined by applying Newton's law;

∑F = ma

F - Ff = ma

Ff = F - ma

Ff = 4 - 2(1.2)

Ff = 4 - 2.4

Ff = 1.6 N

When the applied force increases to 5 N, the magnitude of the block's acceleration is calculated as follows;

F - Ff = ma

5 - 1.6 = 2a

3.4 = 2a

a = 3.4/2

a = 1.7 m/s²

Thus, when the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².

Learn more about frictional force here: brainly.com/question/4618599

You might be interested in
a mass on a spring vibrates in simple harmonic motion at an amplitude of 8.0 cm. if the mass of the object is 0.20kg and the spr
Reil [10]

Answer:

4.06 Hz

Explanation:

For simple harmonic motion, frequency is given by

f=\frac {1}{2\pi}\times \sqrt{\frac {k}{m}} where k is spring constant and m is the mass of the object.

Substituting 0.2 Kg for mass and 130 N/m for k then

f=\frac {1}{2\pi}\times \sqrt{\frac {130}{0.2}}=4.057670803\\f\approx 4.06 Hz

5 0
3 years ago
Scenario
Anvisha [2.4K]

Answer:

1) t = 23.26 s,  x = 8527 m, 2)   t = 97.145 s,  v₀ = 6.4 m / s

Explanation:

1) First Scenario.

After reading your extensive problem, we are going to solve it, for this exercise we must use the parabolic motion relationships. Let's carry out an analysis of the situation, for deliveries the planes fly horizontally and we assume that the wind speed is zero or very small.

Before starting, let's reduce the magnitudes to the SI system

         v₀ = 250 miles/h (5280 ft / 1 mile) (1h / 3600s) = 366.67 ft/s

         y = 2650 m

Let's start by looking for the time it takes for the load to reach the ground.

         y = y₀ + v_{oy} t - ½ g t²

in this case when it reaches the ground its height is zero and as the plane flies horizontally the vertical speed is zero

         0 = y₀ + 0 - ½ g t2

          t = \sqrt{ \frac{2y_o}{g} }

          t = √(2 2650/9.8)

          t = 23.26 s

this is the horizontal scrolling time

          x = v₀ t

          x = 366.67  23.26

          x = 8527 m

the speed at the point of arrival is

         v_y = v_{oy} - g t = 0 - gt

         v_y = - 9.8 23.26

         v_y = -227.95 m / s

Module and angle form

        v = \sqrt{v_x^2 + v_y^2}

         v = √(366.67² + 227.95²)

        v = 431.75 m / s

         θ = tan⁻¹ (v_y / vₓ)

         θ = tan⁻¹ (227.95 / 366.67)

         θ = - 31.97º

measured clockwise from x axis

We see that there must be a mechanism to reduce this speed and the merchandise is not damaged.

2) second scenario. A catapult located at the position x₀ = -400m y₀ = -50m with a launch angle of θ = 50º

we look for the components of speed

           cos θ = v₀ₓ / v₀

           sin θ = v_{oy} / v₀

            v₀ₓ = v₀ cos θ

            v_{oy} = v₀ sin θ

we look for the time for the arrival point that has coordinates x = 0, y = 0

            y = y₀ + v_{oy} t - ½ g t²

            0 = y₀ + vo sin θ t - ½ g t²

            0 = -50 + vo sin 50 t - ½ 9.8 t²

            x = x₀ + v₀ₓ t

            0 = x₀ + vo cos θ t

            0 = -400 + vo cos 50 t

podemos ver que tenemos un sistema de dos ecuación con dos incógnitas

          50 = 0,766 vo t – 4,9 t²

          400 =   0,643 vo t

resolved

          50 = 0,766 ( \frac{400}{0.643 \ t}) t – 4,9 t²

          50 = 476,52 t – 4,9 t²

          t² – 97,25 t + 10,2 = 0

we solve the quadratic equation

         t = [97.25 ± \sqrt{97.25^2 - 4 \ 10.2}] / 2

         t = 97.25 ±97.04] 2

         t₁ = 97.145 s

         t₂ = 0.1 s≈0

the correct time is t1 the other time is the time to the launch point,

         t = 97.145 s

let's find the initial velocity

         x = x₀ + v₀ cos 50 t

         0 = -400 + v₀ cos 50 97.145

         v₀ = 400 / 62.44

         v₀ = 6.4 m / s

5 0
3 years ago
a car moving with a speed of 10 metre per second is accelerator at the rate of 2 metre per second square find its velocity after
STatiana [176]

a = ( v(2) - v(1) ) ÷ ( t(2) - t(1) )

2 = ( v(2) - 10 ) ÷ ( 6 - 0 )

2 × 6 = v(2) - 10

v(2) = 12 + 10

v(2) = 22 m/s

7 0
3 years ago
A total resistance of 3.03 Ω is to be produced by connecting an unknown resistance to a 12.18 Ω resistance. (a) What must be the
insens350 [35]

Answer:

(a) 4.0334Ω

(b)parallel

Explanation:

for resistors connected in parallel;

\frac{1}{R_{eq} } =\frac{1}{R1}+\frac{1}{R2}

Req =3.03Ω , R1 =12.18Ω

\frac{1}{3.03 } =\frac{1}{12.18}+\frac{1}{R2}

\frac{1}{R2}=\frac{1}{3.03 }-\frac{1}{12.18}

\frac{1}{R2}=0.2479

R2=1/0.2479

R2=4.0334Ω

(b)parallel connection is suitable for the desired total resistance. series connection can not be used to achieve a lower resistance as the equation for series connection is.

Req = R1+R2

3 0
3 years ago
Jamie is a hairstylist who works in a salon. He noticed that when many of the stylist or blow drying hair the power goes out wha
Mashcka [7]
The people are using a lot of electricity blow drying to many peoples hair so i would make a schedule so it dosent get to busy with costumers
6 0
3 years ago
Read 2 more answers
Other questions:
  • How much resistance is required to limit the current to 1.5 mA if the potential drop across the resistor is 6V
    8·1 answer
  • A quarterback claims that he can throw the football a horizontal distance of 167 m. Furthermore, he claims that he can do this b
    14·1 answer
  • An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the
    8·1 answer
  • Explain how wind acts as an agent of erosion and deposition
    10·1 answer
  • 7. A student walks 3 blocks east, 4 blocks north, and 3 blocks west. What is the displacement of the student? (5 points)
    10·2 answers
  • A boat heads directly across a river. Its speed relative to the water is 2.6 m/s. It takes it 355 seconds to cross, but it ends
    10·1 answer
  • A car is travelling at a constant speed of 26.5 m/s. Its tires have a radius of 72 cm. If the car slows down at a constant rate
    7·1 answer
  • What is the value of y?<br>18<br>10<br>2y + 4<br>10 + 2х​
    14·1 answer
  • The deepest section of ocean in the world is the Marianas Trench, located in the Pacific Ocean. Here the ocean floor is as low a
    5·1 answer
  • Use the image to determine the volume of the rock.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!