this can be solve using the formala of free fall
t = sqrt( 2y/ g)
where t is the time of fall
y is the height
g is the acceleration due to gravity
48.4 s = sqrt (2 (1.10e+02 m)/ g)
G = 0.0930 m/s2
The velocity at impact
V = sqrt(2gy)
= sqrt( 2 ( 0.0930 m/s2)( 1.10e+02 m)
V = 4.523 m/s
<span> </span>
Answer:
W = 7591.56 J
Explanation:
given,
distance of the box, d = 37 m
Force for pulling the box, F = 217 N
angle of inclination with horizontal,θ = 19°
We know,
Work done is equal to product of force and the displacement.
W = F.d cos θ
W = 217 x 37 x cos 19°
W = 7591.56 J
Hence, the work done to pull the box is equal to W = 7591.56 J
the wave has a speed of 12 m/s.
Explanation:
Speed is directly proportional to wavelength and frequency. The wave has a frequency of 4 Hz. One Hertz (Hz) is equal to one cycle per second. The image shows that the wave has a wavelength of 3 m. Using the given speed and frequency, the wavelength can be calculated as shown below.
speed= wave length x frequency
speed = 3m x 4Hz
speed = 12m m/6
Median: The middle number; found by ordering all data points and picking out the one in the middle (or if there are two middle numbers, taking the mean of those two numbers). Example: The median of 4, 1, and 7 is 4 because when the numbers are put in order (1 , 4, 7) , the number 4 is in the middle.
Answer:
<h2>pull or push</h2>
Explanation:
According to Newton's first law of motion "An object will continue to stay or remain at rest or continue to be in constant motion "unless acted upon by an external force"
F= ma
Basically a force is a pull or a push
so in other words the two ways by which an object can get in motion is by
1. A pull force
2. A push force