1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
9

The magnitude of the charge of the electron is:

Physics
1 answer:
brilliants [131]3 years ago
3 0

Answer:

a. Exactly the same as the magnitude of the charge of the proton.

Explanation:

The elementary charge (e) is the smallest electric charge that can exist in the universe. Any positive or negative electric charge can be expressed as a multiple of the elementary charge, since is the electric charge carried by a single proton or, equivalently, the magnitude of the electric charge carried by a single electron (-1e).

You might be interested in
Briefly explain why arterial injuries are more dangerous than damage to veins
MArishka [77]

Answer:

Injury to a vein increases the risk of forming a blood clot.

Explanation:

hoped this helped

5 0
3 years ago
A laser emits two wavelengths (λ1 = 420 nm; λ2 = 630 nm). When these two wavelengths strike a grating with 450 lines/mm, they pr
Westkost [7]

A) Order of the first laser: 3, order of the second laser: 2

B) The overlap occurs at an angle of 34.9^{\circ}

Explanation:

A)

The formula that gives the position of the maxima (bright fringes) for a diffraction grating is

d sin \theta = m \lambda

where

d is spacing between the lines in the grating

\theta is the angle of the maximum

m is the order of diffraction

\lambda is the wavelength of the light

For laser 1,

d sin \theta = m_1 \lambda_1

For laser 2,

d sin \theta = m_2 \lambda_2

where

\lambda_1 = 420 nm\\\lambda_2 = 630 nm

Since the position of the maxima in the two cases overlaps, then the term d sin \theta on the left is the same for the two cases, therefore we can write:

m_1 \lambda_1 = m_2 \lambda_2\\\frac{m_1}{m_2}=\frac{\lambda_2}{\lambda_1}=\frac{630}{420}=\frac{3}{2}

Therefore:

m_1 = 3

m_2 = 2

B)

In order to find the angle at which the overlap occurs, we use the 1st laser situation:

d sin \theta = m_1 \lambda_1

where:

N = 450 lines/mm = 450,000 lines/m is the number of lines per unit length, so the spacing between the lines is

d=\frac{1}{N}=\frac{1}{450,000}=2.2\cdot 10^{-6} m

m_1 = 3 is the order of the maximum

\lambda_1 = 420 nm = 420\cdot 10^{-9} m is the wavelength of the laser light

Solving for \theta, we find the angle of the maximum:

sin \theta = \frac{m_1 \lambda_1}{d}=\frac{(3)(420\cdot 10^{-9})}{2.2\cdot 10^{-6}}=0.572

So the angle is

\theta=sin^{-1}(0.572)=34.9^{\circ}

Learn more about diffraction:

brainly.com/question/3183125

#LearnwithBrainly

5 0
3 years ago
A parcel has a mass of 500 g .calculate its weight (assume the gravitational field strength is 10 N/Kg
Effectus [21]

Answer:

5N

Explanation

convert grams to kg and multipy with 10 (.5 *10)=5N

5 0
3 years ago
A truck of mass 200kg rests on an inclined plane hindered from rolling down the surface by a storing sprint whose force constant
mixas84 [53]

Answer:

1.92 J

Explanation:

From the question given above, the following data were obtained:

Mass (m) = 200 Kg

Spring constant (K) = 10⁶ N/m

Workdone =?

Next, we shall determine the force exerted on the spring. This can be obtained as follow:

Mass (m) = 200 Kg

Acceleration due to gravity (g) = 9.8 m/s²

Force (F) =?

F = m × g

F = 200 × 9.8

F = 1960 N

Next we shall determine the extent to which the spring stretches. This can be obtained as follow:

Spring constant (K) = 10⁶ N/m

Force (F) = 1960 N

Extention (e) =?

F = Ke

1960 = 10⁶ × e

Divide both side by 10⁶

e = 1960 / 10⁶

e = 0.00196 m

Finally, we shall determine energy (Workdone) on the spring as follow:

Spring constant (K) = 10⁶ N/m

Extention (e) = 0.00196 m

Energy (E) =?

E = ½Ke²

E = ½ × 10⁶ × (0.00196)²

E = 1.92 J

Therefore, the Workdone on the spring is 1.92 J

3 0
3 years ago
What is the period of a simple pendulum 47 cm long (a) on the Earth, and ( b) when it is in a freely falling elevator?
Liula [17]

Answer:

a)1.37 s

b)∞ ( Infinite)

Explanation:

Given that

L= 47 cm              ( 1 m =100 cm)

L= 0.47 m

a)

On the earth :

Acceleration due to gravity = g

We know that time period of the simple pendulum given as

T=2\pi\sqrt{ \dfrac{L}{g_{{eff}}}

Here

g_{eff}= g

Now by putting the values

T=2\pi \times\sqrt{ \dfrac{0.47}{9.81}}

T=1.37 s

b)

Free falling elevator :

When elevator is falling freely then

g_{eff}= 0            ( This is case of weightless motion)

Therefore

T=2\pi\sqrt{ \dfrac{L}{0}

T=∞  (Infinite)

6 0
3 years ago
Other questions:
  • A pitcher throws a 0.15 kg baseball so that it crosses home plate horizontally with a speed of 10 m/s. It is hit straight back a
    9·1 answer
  • The average salinity of sea water is<br> A. 3%<br> B. 3.5%<br> C. 2.5%<br> D. 2%
    9·2 answers
  • What is the temperature inside of a tree?
    15·1 answer
  • We have to use either of these formulas
    15·1 answer
  • 6. Narcotics are illegal drugs<br> A. O True<br> B. O False
    9·1 answer
  • The rotational analogue of force is moment of force, also called torque.
    7·1 answer
  • If a ball is dropped from a height​ (H) its velocity will increase until it hits the ground​ (assuming that aerodynamic drag due
    12·1 answer
  • Helpppppppppppppppppppp
    13·1 answer
  • Identify the medium for ocean waves
    14·1 answer
  • Eifhewfiowehfoiwehfoiwe
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!