Answer:
D. the wind picking up dust and carrying it
Explanation:
Erosion is a process in which an agent transfer the top soil to another region, thereby exposing the lower soil. These agents have the ability to move the top layer of soil and deposit it at another place. The major agents in this case are; a running or flowing body of water and wind.
Therefore, the change to the Earth's surface that is an example of erosion is the wind picking up dust and carrying it. Thereby exposing the lower layers.
Yes, scientific method can be applied on many everyday activities to get a reasonable solution. Infact normally we are applying this method without having it in our knowledge that we are applying it.
For example: In morning we are going to office and we start the car, but it is not started.You turn the engine again and again but it simply donot works.
Observation (the state of defining a problem):
The car is not started
Hypothesis (A possible solution based on the information we already know):
The car is not started because it might be out of gas or there can be some other technical fault.
Experiment (testing of hypothesis by applying different methods of solving problem):
You get the fuel and put it inside the car but it still donot works and car didnot start. Experiment didnot get solution.
Analyze the results of data and test another hypothesis
You call a technician and he check with the car engine tries and finds out that the engine was out of order and needs repairing.
Draw conclusion:
The engine do not works when it is out of order and it is a cause of a car not being started.
<em>Now the theory and law making part can not be applied on this case but it is a part of scientific method.</em>
Hope it helps!
780 seconds, or 13 minutes.
In the future, please use proper capitalization. There's a significant difference in the meaning between mV and MV. One of them indicated millivolts while the other indicates megavolts. For this problem, I'll make the following assumptions about the values presented. They are:
Total energy = 1.4x10^11 Joules (J)
Current per flash = 30 Columbs (C)
Potential difference = 30 Mega Volts (MV)
First, let's determine the power discharged by each bolt. That would be the current multiplied by the voltage, so
30 C * 30x10^6 V = 9x10^8 CV = 9x10^8 J
Now that we know how many joules are dissipated per flash, let's determine how flashes are needed.
1.4x10^11 / 9x10^8 = 1.56E+02 = 156
Since each flash takes 5 seconds, that means that it will take about 5 * 156 = 780 seconds which is about 780/60 = 13 minutes.
It is a very reactive metal with 11 protons ,12 neutrons, 11 electrons, and 1 valence electron