Answer:
I = 21.13 mA ≈ 21 mA
Explanation:
If
I₁ = 5 mA
L₁ = L₂ = L
V₁ = V₂ = V
ρ₁ = 1.68*10⁻⁸ Ohm-m
ρ₂ = 1.59*10⁻⁸ Ohm-m
D₁ = D
D₂ = 2D
S₁ = 0.25*π*D²
S₂ = 0.25*π*(2*D)² = π*D²
If we apply the equation
R = ρ*L / S
where (using Ohm's Law):
R = V / I
we have
V / I = ρ*L / S
If V and L are the same
V / L = ρ*I / S
then
(V / L)₁ = (V / L)₂ ⇒ ρ₁*I₁ / S₁ = ρ₂*I₂ / S₂
If
S₁ = 0.25*π*D² and
S₂ = 0.25*π*(2*D)² = π*D²
we have
ρ₁*I₁ / (0.25*π*D²) = ρ₂*I₂ / (π*D²)
⇒ I₂ = 4*ρ₁*I₁ / ρ₂
⇒ I₂ = 4*1.68*10⁻⁸ Ohm-m*5 mA / 1.59*10⁻⁸ Ohm-m
⇒ I₂ = 21.13 mA
Answer:
The appropriate solution is:
(a) 
(b) 
(c) 
Explanation:
According to the question, the value is:
Power of bulb,
= 60 W
Distance,
= 1.0 mm
Now,
(a)
⇒ 
On applying cross-multiplication, we get
⇒ 
⇒ 
⇒ 
(b)
As we know,
⇒ 
By putting the values, we get
⇒ 
(c)
⇒ 

⇒ 
⇒ 
The railroad tracks will move with the plate boundaries
The answer is do not break, the key avoiding skids is to always smoothly apply your brakes and accelerator and to turn slowly and smoothly. Reducing of the speed before oncoming turns and once driving in possibly hazardous circumstances such as wet, icy or snow covered roadways or on roadways with loose gravel.
Answer: 14.1 m/s
Explanation:
We can solve this with the Conservation of Linear Momentum principle, which states the initial momentum
(before the elastic collision) must be equal to the final momentum
(after the elastic collision):
(1)
Being:


Where:
is the combined mass of Tubby and Libby with the car
is the velocity of Tubby and Libby with the car before the collision
is the combined mass of Flubby with its car
is the velocity of Flubby with the car before the collision
is the velocity of Tubby and Libby with the car after the collision
is the velocity of Flubby with the car after the collision
So, we have the following:
(2)
Finding
:
(3)
(4)
Finally: