Incomplete question as the unit of volume is not written correctly.So the complete question is here:
A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it in a graduated cylinder. What is the density of a 240-g rock that displaces 89.0 cm³?
Answer:

Explanation:
Given data
Mass m=240g
Volume V=89.0 cm³
To find
Density d
Solution
If rock displaces 89.0 cm³ of water means volume of rock is also 89cm³
So

155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
Answer:
Total energy is constant
Explanation:
The laws of thermodynamics state that thermal energy (heat) is always transferred from a hot body (higher temperature) to a cold body (lower temperature).
This is because in a hot body, the molecules on average have more kinetic energy (they move faster), so by colliding with the molecules of the cold body, they transfer part of their energy to them. So, the temperature of the hot body decreases, while the temperature of the cold body increases.
This process ends when the two bodies reach the same temperature: we talk about thermal equilibrium.
In this problem therefore, this means that the thermal energy is transferred from the hot water to the cold water.
However, the law of conservation of energy states that the total energy of an isolated system is constant: therefore here, if we consider the hot water + cold water as an isolated system (no exchange of energy with the surroundings), this means that their total energy remains constant.
Answer:
68 db
Explanation:
Since now instead of one two dogs are barking simultaneously close to each other, therefore we take n =2.
Ignoring interference effects, the barking of two dogs result in a higher level of intensity which is given by,
β(db)=10×㏒(2)
=3 db
So, a reasonable estimate for the raised Intensity Level is: 65db+3db = 68db