I have no clue, maybe someone else can help you
Answer:
v = 10 [m/s].
Explanation:
The largest mass is that of 4 [kg], in this way the momentum can be calculated by means of the product of the mass by velocity.

where:
P = momentum [kg*m/s]
m = mass = 4 [kg]
v = velocity = 5 [m/s]
Now the momentum:
![P=4*5\\P=20[kg*m/s]](https://tex.z-dn.net/?f=P%3D4%2A5%5C%5CP%3D20%5Bkg%2Am%2Fs%5D)
This same momentum is equal for the other mass, in this way we can find the velocity.
![P=m*v\\20=2*v\\v=10[m/s]](https://tex.z-dn.net/?f=P%3Dm%2Av%5C%5C20%3D2%2Av%5C%5Cv%3D10%5Bm%2Fs%5D)
Answer:
The total displacement from the starting point is 1.5 m.
Explanation:
You need to sum and substract, depending on the movement (to the right, sum; to the left, substract).
First, it moves 4.3 m right and return 1.1 m. So the new distance from the starting point is 3.2 m.
Second, it moves 6.3 m right, so the new distance is 9.5 m.
Finally it moves 8 m to the left, so 9.5 m - 8 m= 1.5 m.
Summarizing, at the end the squirrel is 1.5 m from its starting point.
Answer:

Explanation:
It is given that,
Mass of bundle of shingles, m = 10 kg
Upward acceleration of the shingles, 
The radius of the motor of the pulley, r = 0.17 m
Let T is the tension acting on the shingles when it is lifted up. It can be calculated as :



T = 113 N
Let
is the minimum torque that the motor must be able to provide. It is given by :



So, the minimum value of torque is 19.21 N-m. Hence, this is the required solution.
Conservation of momentum: total momentum before = total momentum after
Momentum = mass x velocity
So before the collision:
4kg x 8m/s = 32
1kg x 0m/s = 0
32+0=32
Therefore after the collision
4kg x 4.8m/s = 19.2
1kg x βm/s = β
19.2 + β = 32
Therefore β = 12.8 m/s