1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesantik [10]
3 years ago
15

Two flat 4.0 cm × 4.0 cm electrodes carrying equal but opposite charges are spaced 2.0 mm apart with their midpoints opposite ea

ch other. Between the electrodes but not near their edges, the electric field strength is 2.5 × 106 N/C. What is the magnitude of the charge on each electrode? (ε0 = 8.85 × 10-12 C2/N ∙ m2)
Physics
1 answer:
serious [3.7K]3 years ago
7 0

Answer:

1.77 x 10^-8 C

Explanation:

Let the surface charge density of each of the plate is σ.

A = 4 x 4 = 16 cm^2 = 16 x 10^-4 m^2

d = 2 mm

E = 2.5 x 10^6 N/C

ε0 = 8.85 × 10-12 C2/N ∙ m2

Electric filed between the plates (two oppositively charged)

E = σ / ε0

σ = ε0 x E

σ = 8.85 x 10^-12 x 2.5 x 10^6 = 22.125 x 10^-6 C/m^2

The surface charge density of each plate is ± σ / 2

So, the surface charge density on each = ± 22.125 x 10^-6 / 2

                                                                 = ± 11.0625 x 10^-6 C/m^2  

Charge on each plate = Surface charge density on each plate x area of each plate

Charge on each plate = ± 11.0625 x 10^-6  x 16 x 10^-4 = ± 1.77 x 10^-8 C

You might be interested in
Which of the following affects the rate constant of a reaction?
Art [367]
A the entropy of the reaction I think ion know if that’s correct
3 0
2 years ago
Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance
siniylev [52]

Answer:

interest point:

1) Point on the left side

2) Point within the radius r₁ of the first sphere

3) Point between the two spheres

4) point within the radius r₂ of the second sphere

5) Right side point

Explanation:

In this case, the total electric field is the vector sum of the electric fields of each sphere, to simplify the calculation on the line that joins the two spheres

       

We will call the sphere on the left 1 and it has a positive charge Q with radius r1, the sphere on the right is called 2 with charge -Q with radius r2. The total field is

          E_ {total} = E₁ + E₂

          E_{ total} = k \frac{Q}{x_1^2} + k  \frac{Q}{x_2^2}

the bold indicate vectors, where x₁ and x₂ are the distances from the center of each sphere. If the distance that separates the two spheres is d

          x₂ = x₁ -d

          E total = k  \frac{Q}{x_1^2} - k \frac{Q}{(x_1 - d)^2}

Let's analyze the field for various points of interest.

1) Point on the left side

in this case

            E_ {total} = k Q \ ( \frac{1}{x_1^2} - \frac{1}{(x_1 +d)2} )

            E_ {total} = k \frac{Q}{x_1^2}   ( 1 - \frac{1}{(1 + \frac{d}{x_1} )^2 } )

We have several interesting possibilities:

* We can see that as the point is further away the field is more similar to the field created by two point charges

* there is a point where the field is zero

            E_ {total} = 0

             x₁² =  (x₁ + d)²

           

2) Point within the radius r₁ of the first sphere.

In this case, according to Gauus' law, the charge is on the surface of the sphere at the point, there is no charge inside so this sphere has no electric field on its inner point

              E_ {total} = -k \frac{Q}{x_2^2} = -k \frac{Q}{((d-x_1)^2}

this expression holds for the points located at

                  -r₁ <x₁ <r₁

3) Point between the two spheres

                E_ {total} = k \frac{Q}{x_1^2} + k \frac{Q}{(d+x_1)^2}

This champ is always different from zero

4) point within the radius r₂ of the second sphere, as there is no charge inside, only the first sphere contributes

                  E_ {total} = + k \frac{Q}{(d-x_1)^2}+ k Q / (d-x1) 2

point range

                  -r₂ <x₂ <r₂

             

5) Right side point

            E_ {total} = k \frac{Q}{(x_2-d)^2} - k \frac{Q}{x_2^2}

             E_ {total} = - k \frac{Q}{x_2^2} ( 1- \frac{1}{(1- \frac{d}{x_2})^2 } )- k Q / x22 (1- 1 / (x1 + d) 2)

we have two possibilities

* as the distance increases the field looks more like the field created by two point charges

* there is a point where the field is zero

8 0
2 years ago
The vector values are 4.0 km due East and 3.0 km due north the resultant vector is 5.0 km long and 37 north of East this values
klemol [59]

Answer:

This values shows a right angle triangle

Explanation:

Given;

a vector 4.0 km due East

a 3.0 km due north

the resultant vector is 5.0 km

The resultant vector can be obtained by Pythagoras theorem if the vectors form a right angle triangle.

R² = 4² + 3²

R² = 16 + 9

R² = 25

R = √25

R = 5 km    (right angle triangle proved)

Therefore, this values shows a right angle triangle

4 0
3 years ago
And 8 kg bowling ball is rolling along the frictionless alley
VLD [36.1K]
It will stop eventually
8 0
3 years ago
I need help!!!!!!!
wlad13 [49]
One simple use of the elements of the electromagnetic spectrum that we use during our everyday lives is our daily use of microwave radiation. microwave radiation is absorbed by water molecules which heats up and cooks the food whilst killing bacteria. Another would be ultraviolet radiation which we use daily in things such as light bulbs. The sun also uses this. Lastly, we use radio waves constantly. May it be tv programs, radio, or our cell phones.
4 0
3 years ago
Other questions:
  • A stubborn 130 kg pig sits down and refuses to move. to drag the pig to the barn, the exasperated farmer ties a rope around the
    6·1 answer
  • Jamal combined baking soda and vinegar but he is having trouble determining if what he observed is a chemical reaction or a phys
    15·2 answers
  • What causes the phases of the moon as seen from earth?
    14·2 answers
  • A ball is thrown with an angle of 25.0 to the horizon with a speed of 18.0 m/s. What are its horizontal and vertical components?
    7·1 answer
  • As a 5.0 × 10^2-newton basketball player jumps
    12·1 answer
  • Does a more efficient car have a larger or smaller LPK number? Explain how you know..
    12·2 answers
  • A battery has a terminal voltage of 12.0 V when no current flows. Its internal resistance is 2.0 Ω. If a 7.2 Ω resistor is conne
    9·1 answer
  • The standard metric unit of volume is the _____.
    14·1 answer
  • If object A is half the mass of object B, then is it possible for them to have the same momentum
    9·1 answer
  • Charge is uniformly distributed throughout a spherical insulating volume of radius R = 4.00 cm. The charge per unit volume is
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!