Answer:
1-As winds rise up the windward side of a mountain range, the air cools and precipitation falls.
2-Mountains and mountain ranges can cast a rain shadow. As winds rise up the windward side of a mountain range, the air cools and precipitation falls.
3-Mountains and mountain ranges can cast a rain shadow. As winds rise up the windward side of a mountain range, the air cools and precipitation falls. On the other side of the range, the leeward side, the air is dry, and it sinks.
4-Rain shadow deserts are formed because tall mountain ranges prevent moisture-rich clouds from reaching areas on the lee, or protected side, of the range.
5-Mountains and mountain ranges can cast a rain shadow. As winds rise up the windward side of a mountain range, the air cools and precipitation falls. On the other side of the range, the leeward side, the air is dry, and it sinks. So there is very little precipitation on the leeward side of a mountain range.
6-Mountains and mountain ranges can cast a rain shadow. As winds rise up the windward side of a mountain range, the air cools and precipitation falls. On the other side of the range, the leeward side, the air is dry, and it sinks. So there is very little precipitation on the leeward side of a mountain range.
Explanation:
#6 and 5 are the same
A) The friction force while the box is stationary is (the coefficient of static friction)*(the normal force). In this case, the normal force is equal to the gravitational force, or the weight. To move the box, we need a minimum horizontal force that is equal to the friction force. The weight is (500 kg)*(9.81 m/s^2)= 4905 N. So, (0.45)*(4905 N) = 2207.25 N.
b) The acceleration will be the horizontal force - the kinetic friction force (since they act in opposite directions) divided by the mass. Kinetic friction force = (coefficient of kinetic friction)*(normal force or weight).
F(net) = (2207.25 N)-(0.30)(4905 N) = 735.75 N
a = (735.75 N)/(500kg)= 1.4715 m/s^2
Decreases, stays the same, increases.
The volume decreases because as air is cooled, the individual molecules collectively possess less kinetic energy and the distances between them decrease, thus leading to a decrease in the volume they occupy at a certain pressure (please note that my answer only holds under constant pressure; air, as a gas, doesn't actually have a definite volume).
The mass stays the same because physical processes do not create or destroy matter. The law of conservation of mass is obeyed. You're only cooling the air, not adding more air molecules.
The density decreases because as the volume decreases and mass stays the same, you have the same mass occupying a smaller volume. Density is mass divided by volume, so as mass is held constant and volume decreases, density increases.
Density’s is mass by volume
So mass is 48 grams
Volume is 8cm^3
There is no need to convert units as they are same
So 48/8 gives you 6
So your answe should be 6g/cm^3 or 6gcm^-3
<em>Note: Your question inputs seem a little odd. But, I am assuming that you really mean '10km in 5 ms'.</em>
<em></em>
Answer:
The Average speed = 15000 / 0.005 = 3000000 m/s
Explanation:
- Average speed can be calculated by dividing the total distance covered by the total time.
Average speed = Total Distance / Total time
Given
- Total distance = 15km = 15(1000) = 15000 m
- Total time = 5 ms = 0.005 seconds
Thus,
Average speed = Total Distance / Total time
Average speed = 15000 / 0.005 = 3000000 m/s