Answer:
![g_{moon}=1.67 [m/s^{2} ]](https://tex.z-dn.net/?f=g_%7Bmoon%7D%3D1.67%20%5Bm%2Fs%5E%7B2%7D%20%5D)
Explanation:
The weight of some mass is defined as the product of mass by gravitational acceleration. In this way using the following formula we can find the weight.

where:
w = weight [N]
m = mass = 0.06 [kg]
g = gravity acceleration = 10 [N/kg]
Therefore:
![w=0.06*10\\w=0.6[N]](https://tex.z-dn.net/?f=w%3D0.06%2A10%5C%5Cw%3D0.6%5BN%5D)
By Hooke's law we know that the force in a spring can be calculated by means of the following expression.

where:
k = spring constant [N/m]
x = deformed distance = 6 [cm] = 0.06 [m]
We can find the spring constant.
![k= F/x\\k=0.6/0.06\\k=10 [N/m]](https://tex.z-dn.net/?f=k%3D%20F%2Fx%5C%5Ck%3D0.6%2F0.06%5C%5Ck%3D10%20%5BN%2Fm%5D)
Since we use the same spring on the moon and the same mass, the constant of the spring does not change, the same goes for the mass.
![F_{moon}=k*0.01\\F = 10*0.01\\F=0.1[N]](https://tex.z-dn.net/?f=F_%7Bmoon%7D%3Dk%2A0.01%5C%5CF%20%3D%2010%2A0.01%5C%5CF%3D0.1%5BN%5D)
Since this force is equal to the weight, we can now determine the gravitational acceleration.
![F=m*g_{moon}\\g=F/m\\g = 0.1/0.06\\g_{moon} = 1.67[m/s^{2} ]](https://tex.z-dn.net/?f=F%3Dm%2Ag_%7Bmoon%7D%5C%5Cg%3DF%2Fm%5C%5Cg%20%3D%200.1%2F0.06%5C%5Cg_%7Bmoon%7D%20%3D%201.67%5Bm%2Fs%5E%7B2%7D%20%5D)
The energy transferred to the spring is given by:

where
k is the spring constant
x is the elongation of the spring with respect its initial length
Let's convert the data into the SI units:


so now we can use these data inside the equation ,to find the energy transferred to the spring:
Given Data: Diameter 'd' = 30 cm = 0.3 m Lifting Weight 'W' = mg = 2000*9.81 N = 19,620 N Calculations: Area of the lift 'A' = <span>pi\over4*d^2=pi\over4*0.3^2=0.07 m^2
Thank you for posting your question here at brainly. I hope the answer helps. </span>
Answer: The thermal efficiency of the engine is 41.09 %.
Explanation:
Efficiency is the ratio of the useful work performed to the total energy expended or heat taken in.
Formula for thermal efficiency of engine is

= efficiency
= heat rejected = 266.7 kJ
= heat extracted = 452.8 kJ
Putting in the values we get:



The thermal efficiency of the engine is 41.09 %.