Answer: -
Surface Tension
Explanation: -
Surface tension is cohesive force created as a result of hydrogen bonding, that enables a liquid drop to have a minimum surface area.
Due to it being cohesive, the water top surface is concave in nature, allowing us to hence slightly overfill a glass with water.
Due to surface tension, the surface of water behaves like a stretched membrane, allowing dense objects like a length wise steel needle to float on water.
Thus, the hydrogen bonding in water creates __surface tension__, a cohesive force that enables one to slightly overfill a glass with water or allows denser objects, such as a lengthwise steel needle, to float on water
I am not all understood but for the school to earn money you can:
make
--a raffle
--lotto
-- yard sale
-- class photo
-- origami for sale or something
-- buffet or food sale (example all Friday ice cream sale, 2 livre ice cream)
Answer:
(molecular) 3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
(ionic) 3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
(net ionic) 3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
Explanation:
The molecular equation includes al the species in the molecular form.
3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
The ionic equation includes all the ions (species that dissociate in water) and the species that do not dissociate in water.
3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
The net ionic equation includes only the ions that participate in the reaction and the species that do not dissociate in water. In does not include <em>spectator ions</em>.
3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
Answer:
yh
Explanation:
welcome.This place is for learning
Answer:
A. 1:3
Explanation:
If we look at the ions shown in the image attached to the question, we will notice that we have aluminum (Al^3+), a trivalent ion combining with the iodide ion (I^-).
Aluminum can easily give out its three outermost electrons to three atoms of iodine. If aluminum gives out its three electrons, it achieves the stable octet structure. Iodine atoms have seven electrons in their outermost shell. They only need one more electrons to complete their octet. This one electron can be gotten by the combination of three iodine atoms with one atom of aluminum. One electron each is transferred from the aluminum atom to each iodine atom to form AlI3 with a ratio of 1:3.