1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
11

A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region

is 5.40 mlong and reduces the toboggan's speed by 1.20 m/s .
a) What average friction force did the rough region exert on the toboggan?
b) By what percent did the rough region reduce the toboggan's kinetic energy?
c) By what percent did the rough region reduce the toboggan's speed?
Physics
1 answer:
zmey [24]3 years ago
5 0

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

You might be interested in
A plastic rod of length d = 1.5 m lies along the x-axis with its midpoint at the origin. The rod carries a uniform linear charge
Serga [27]

Answer:

Explanation:

Let the plastic rod extends from - L to + L .

consider a small length of dx on the rod on the positive x axis at distance x . charge on it =  λ dx where  λ is linear charge density .

It will create a field at point P on y -axis . Distance of point P

= √ x² + .15²

electric field at P due to small charged length

dE = k λ dx x  / (x² + .15² )

Its component along Y - axis

= dE cosθ where θ is angle between direction of field dE and y axis

= dE x .15 / √ x² + .15²

=  k λ dx  .15 / (x² + .15² )³/²

If we consider the same strip along the x axis at the same position  on negative x axis , same result will be found . It is to be noted that the component of field in perpendicular to y axis will cancel out each other . Now for electric field due to whole rod at point p , we shall have to integrate the above expression from - L to + L

E = ∫  k λ  .15  / (x² + .15² )³/² dx

=  k λ  x L / .15 √( L² / 4 + .15² )

6 0
3 years ago
A 100 kg cart on a roller coaster has 1800J of kinetic energy. How fast is it going?<br> KE= 1/2mv2
34kurt

Answer:

the speed is equal to 6 m/s

Explanation:

7 0
3 years ago
skater spins over a point at a speed of 3.0 rotations per second then the momentum of inertia is 0.60 kg.M2, what is its angular
laiz [17]

Answer:

L=11.3\ kg-m^2/s

Explanation:

Given that,

Angular speed of a skater, \omega=3\ rot/s=18.84\ rad/s

The moment of inertia of the skater, I = 0.6 kg-m²

We need to find the angular momentum of the skater. The formula for the angular momentum of the skater is given by :

L=I\omega

Substitute all the values,

L=0.6\times 18.84\\\\L=11.3\ kg-m^2/s

So, its angular momentum is equal to 11.3\ kg-m^2/s.

8 0
3 years ago
The__ of friction is a number that represents the resistance to sliding
Tresset [83]

Answer:

B. coefficient

Explanation:

i dont have to explain right?

3 0
3 years ago
A 6.0 m section of wire carries a current of 5.2 A from east to west in the earth's magnetic field of 1.0 × 105 T at a location
NNADVOKAT [17]
Well, since you only want direction, ignore the numbers. Use the right hand rule.
Current (pointer finger) points west (left). 
Magnetic field (middle finger) points south (towards you). 
Force (thumb) then points up (away from the earth)
4 0
4 years ago
Other questions:
  • The primary service used by stations to exchange mac frames when the frame must traverse the ds to get from a station in one bss
    10·1 answer
  • A square metal block with mass (m) is suspended by five wires with the same length. One of these wires is made of iron at the ce
    15·1 answer
  • An 92-kg football player traveling 5.0m/s in stopped in 10s by a tackler. What is the original kinetic energy of the player? Exp
    6·1 answer
  • A bus travels a distance of 120 km with a speed of 40km per hour and returns with a speed of 30km per hour calculate the average
    5·1 answer
  • List two of the tangible and/or intangible ways in which state governments improve society
    5·1 answer
  • SOHCAHTOA MATH REVIEW <br><br> Find the angle x from the diagram above
    9·1 answer
  • Which volcanic hazard can block the sunlight and temporarily cool the Earth’s surface?
    11·1 answer
  • The Grand Canyon is more than 400 km long and in some places almost 2 km deep. Which model best represents the main process that
    13·1 answer
  • The human ear can respond to an extremely large range of intensities - the quietest sound the ear can hear is smaller than 10-20
    8·1 answer
  • Which of the following equations represents an acid base reaction?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!