1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
2 years ago
11

A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region

is 5.40 mlong and reduces the toboggan's speed by 1.20 m/s .
a) What average friction force did the rough region exert on the toboggan?
b) By what percent did the rough region reduce the toboggan's kinetic energy?
c) By what percent did the rough region reduce the toboggan's speed?
Physics
1 answer:
zmey [24]2 years ago
5 0

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

You might be interested in
In February 1955, a paratrooper fell 370 m from an airplane without being able to open his chute but happened to land in snow, s
nevsk [136]

a) 0.94 m

The work done by the snow to decelerate the paratrooper is equal to the change in kinetic energy of the man:

W=\Delta K\\-F d = \frac{1}{2}mv^2 - \frac{1}{2}mu^2

where:

F=1.1 \cdot 10^5 N is the force applied by the snow

d is the displacement of the man in the snow, so it is the depth of the snow that stopped him

m = 68 kg is the man's mass

v = 0 is the final speed of the man

u = 55 m/s is the initial speed of the man (when it touches the ground)

and where the negative sign in the work is due to the fact that the force exerted by the snow on the man (upward) is opposite to the displacement of the man (downward)

Solving the equation for d, we find:

d=\frac{1}{2F}mu^2 = \frac{(68 kg)(55 m/s)^2}{2(1.1\cdot 10^5 N)}=0.94 m

b) -3740 kg m/s

The magnitude of the impulse exerted by the snow on the man is equal to the variation of momentum of the man:

I=\Delta p = m \Delta v

where

m = 68 kg is the mass of the man

\Delta v = 0-55 m/s = -55 m/s is the change in velocity of the man

Substituting,

I=(68 kg)(-55 m/s)=-3740 kg m/s

7 0
3 years ago
Which of the following statements below is correct?
Mamont248 [21]
C. is correct. when you make a pizza, you see the the meat or pepperoni or cheese heating up and sometimes melted. (thats physical). on the inside the crust in heated and the toppings are cooked (chemical)
5 0
2 years ago
Give the relationship(s) for any pair of protons with the proper term(s). Label – your choice. A.Heterotopic B.Heterotopic, dias
Afina-wow [57]

Answer and Explanation

• Heterotopic protons are those that when substituted by the same substituent, are structurally different. They are not similar, diastereotopic or enantiotopic.

• Diastreotopic protons refers to two protons in a molecule which, if replaced by the same substituent, would generate compounds that are diastereomers. Diastereotopic groups are often, but not always, identical groups attached to the same atom in a molecule containing at least one chiral center.

For example, the two hydrogen atoms of the C3 carbon in (S)-2-bromobutane are diastereotopic (shown in the attached image). Replacement of one hydrogen atom with a bromine atom will produce (2S,3R)-2,3-dibromobutane. Replacement of the other hydrogen atom with a bromine atom will produce the diastereomer (2S,3S)-2,3-dibromobutane.

• Homotopic protons in a compound are equivalent protons. Two protons A and B are homotopic if the molecule remains the same (including stereochemically) when the protons are interchanged with some other atom (substituent) while the remaining parts of the molecule stay fixed. Homotopic atoms are always identical, in any environment.

For example, ethane, the two H atoms on C1 and C2 carbons on the same side (as shown in the attached image) are homotopic as they exhibit the phenomenon described above.

• Enantiotopic protons are two protons in a molecule which, if one or the other were replaced (by the same substituent), would generate a chiral compound. The two possible compounds resulting from that replacement would be enantiomers.

For example, in the attached image to this answer, the two hydrogen atoms attached to the second carbon in butane are enantiotopic. Replacement of one hydrogen atom with a bromine atom will produce (R)-2-bromobutane. Replacement of the other hydrogen atom with a bromine atom will produce the enantiomer (S)-2-bromobutane.

Hope this helps!!!

7 0
2 years ago
Why does a dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s?
andrew11 [14]

A dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s due to acceleration due to gravity.

s = vt - 1 / 2 at²

s = Displacement

v = Final velocity

t = Time

a = Acceleration

s = 5 m

t = 1 s

a = 10 m / s²

5 = ( v * 1 ) - ( 1 / 2 * 10 * 1 * 1 )

5 = v - 5

v = 10 m / s

The equation used to solve the given problem is an equation of motion. In a free fall motion, usually air resistance is not considered for easier calculation. If air resistance is considered acceleration cannot be constant throughout the entire motion.

Therefore, a dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s due to acceleration due to gravity.

To know more about equation of motion

brainly.com/question/5955789

#SPJ1

4 0
7 months ago
The ground state energy of an oscillating electron is 1.23 eV. How much energy must be added to the electron to move it to the t
Vikki [24]

Answer:

  • The energy that must be added to the electron to move it to the third excited state is  -1.153 eV
  • The energy that must be added to the electron to move it to the fourth excited state is  -1.181 eV

Explanation:

Given;

Energy of electron in ground state (n = 1 ) = 1.23 eV

E₁ = 1.23 eV

Eₙ = E₁ /n²

where;

E₁ is the energy of the electron in ground state

n is the energy level,

For third excited state, n = 4

E₄ = E₁ /4²

E₄ = (1.23 eV) / 16

E₄ = 0.077 eV

Change in energy level, = E₄ - E₁ = 0.077 eV - 1.23 eV = -1.153 eV

The energy that must be added to the electron to move it to the third excited state is  -1.153 eV

For fourth excited state, n = 5

E₅ = E₁ /5²

E₄ = (1.23 eV) / 25

E₄ = 0.049 eV

Change in energy level, = E₅ - E₁ = 0.049 eV - 1.23 eV = -1.181 eV

The energy that must be added to the electron to move it to the fourth excited state is  -1.181 eV

5 0
3 years ago
Other questions:
  • Canola oil is less dense than water, so it floats on water, but its index of refraction is 1.47, higher than that of water. When
    7·1 answer
  • Three kilograms of argon (Ar) changes from an initial volume and a temperature of 298K to (a) four times the volume and a temper
    10·1 answer
  • Calculate the acceleration if you push with a 20-N horizontal force against a 2-kg block on a horizontal friction- free air tabl
    5·1 answer
  • Elias stretches a rubber band and let's it go. The rubber band flies across the room. Elias says this demonstrates the transform
    11·1 answer
  • Help please 80pnts and brainliest guaranteed
    7·1 answer
  • You and your dog are walking along a pond. Your dog looks into the still water and is startled to see its reflection. Which phen
    13·1 answer
  • Please help me this is important!
    7·1 answer
  • Your friend clams that objects do not have to be thouching for a magnetic force to cause motion. How would you support your frie
    10·1 answer
  • #1- How much Magnesium is consumed in this reaction? *input # only.
    11·1 answer
  • A 1kg mass is moving at 1m/s. What is its kinetic energy?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!