1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
11

A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region

is 5.40 mlong and reduces the toboggan's speed by 1.20 m/s .
a) What average friction force did the rough region exert on the toboggan?
b) By what percent did the rough region reduce the toboggan's kinetic energy?
c) By what percent did the rough region reduce the toboggan's speed?
Physics
1 answer:
zmey [24]3 years ago
5 0

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

You might be interested in
Why could you hold a stack of books on your head without pain, whereas it would hurt if someone put a small pebble between the b
trapecia [35]

Answer:

Both the cases deal with the principle of pressure due to force acting on an area.

Explanation:

When a stone is place between a pile of book and our head when we carry it then the area subjected to the force decreases while the magnitude of the force remains same and therefore the pressure on our head increases.

As we know that pressure is force per unit area is called pressure.

Mathematically:

Pressure=\frac{Force}{Area}

It is easy to cut our skin with an edge of a paper because our skin is relatively softer than the edge of a paper and the edge of a paper is thin which applies more pressure due to  less area of contact with our skin.

7 0
4 years ago
Read 2 more answers
A baseball bat changes the momentum of a ball with an impulse of 13.8 Nᐧs. What is the average force that the bat exerts on the
vladimir2022 [97]

Answer:

13800 N

Explanation:

Impulse is the product of average force and time expressed as I=Ft where I is the impulse which results into change in momentum, F is the average force and t is the time of impact. Making F the subject of formula then

F=\frac {I}{t}

Substituting I with 13.8 N.s and time, t witg 0.001 s then the average force is calculated as

F=\frac {13.8 N.s}{0.001}=13800N

Therefore, the average force is equivalent to 13800 N

4 0
3 years ago
Why aren't the electrons counted in the mass of an atom?
Radda [10]

Answer:

Explanation:

The mass of an electron is small compared to the neutron and proton, so it's negligible. It's like adding zero to a number.

3 0
3 years ago
Compare the motion of an object acted on by balanced forces with the motion of an object acted on unbalanced forces
Andrew [12]
When balanced forces act upon an object, the object does not move. But when unbalanced forces act on it, it does. 
6 0
4 years ago
Calculate the kinetic energy of a 0.032 kg ball as it leaves a hand to be thrown upwards at 6.2 m/s
AnnZ [28]

Answer:

The ball will have a kinetic energy of 0.615 Joules.

Explanation:

Use the kinetic energy formula

E_k = \frac{1}{2}mv^2 = \frac{1}{2}0.032kg\cdot 6.2^2 \frac{m^2}{s^2}= 0.615J

The kinetic energy at the moment of leaving the hand will be 0.615 Joules. (From there on, as it ball is traveling upwards, this energy will be gradually traded off with potential energy until the ball's velocity becomes zero at the apex of the flight)

3 0
4 years ago
Other questions:
  • Compare the inertia of a car to the inertia of a bicycle
    9·2 answers
  • "a needle can be made to "float" on the surface tension of water. what causes this surface tension to form"
    10·1 answer
  • Explain how a pile of ashes has the same mass as the original log before it was burned. What is the law that defines this
    13·2 answers
  • If you put a straw into a glass of water, the straw looks to be bent, although nothing has really happened to the straw. The ter
    7·2 answers
  • The spreading of sound waves around openings in barriers is called
    14·2 answers
  • Which is a characteristic of projectile motion?
    5·2 answers
  • Suppose your car is equipped with tire pressure monitoring system (TPMS) and the tire pressure is 34.0 psi on a 98F day in calif
    7·1 answer
  • In science class, students constructed an explanation on the composition of soil. Which student offered the BEST explanation? (A
    15·2 answers
  • Escape velocity of an object from the surface of a planet depends upon:
    9·1 answer
  • Determina el volumen de 450 g de alcohol
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!