1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
3 years ago
10

Which describes an object's velocity that changes by the same amount each second? constant acceleration constant time constant s

peed constant displacement
Physics
2 answers:
Alex777 [14]3 years ago
4 0
Constant acceleration

because when the object's velocity is changing then the object is accelerating or decelerating
as acceleration describe changing of velocity so the answer is constant acceleration

Hope I can help u
kaheart [24]3 years ago
3 0

Answer:

Explanation:

Acceleration is defined as the rate of change of velocity.

Acceleration = (Change in velocity) / time taken

Acceleration = (Final velocity - initial velocity) / time

As the object velocity changes by the same amount in each second, it means the acceleration is constant.

You might be interested in
A water wave has a frequency of 2 Hertz and a wavelength of 5 cm. Calculate it speed
Llana [10]

Answer: 0.1 m/s

Explanation:

Use formula,

v = f * w where, v is speed, f is frequency and w is wavelength.

Now,

v = 2 * 5 * 10 ^ -2 ( Remember to convert all the units to SI units. Here 5 cm becomes 5 * 10 ^ -2 m. )

v = 0.1 m/s.

8 0
3 years ago
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!<br><br> The two main types of circuits are:
Gre4nikov [31]

Answer:

series and parallel

Explanation:

4 0
3 years ago
A student jumps off a sled toward the NORTH after it stops at the bottom of an icy hill. Based on Newton's third law of motion,
zhuklara [117]

When the student the sled jumps off toward the north , the sled most likely move towards the south.

<h3>What is the Newton third law?</h3>

According to the Newton third law of motion, action and reaction are equal and opposite. This means that the direction of the reaction force must also be opposite to that of the action.

As such, when the student the sled jumps off toward the north , the sled most likely move towards the south.

Learn more about Newton third law:brainly.com/question/974124

#SPJ1

8 0
2 years ago
The length of a simple pendulum is 0.81 mand the mass of the particle (the "bob") at the end of the cable is0.23 kg. The pendulu
Gemiola [76]

Answer:

\displaystyle w=3.478\ rad/sec

M=0.0182\ J

v=0.398\ m/s

Explanation:

<u>Simple Pendulum</u>

It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).

(a) The angular frequency of the motion is computed as

\displaystyle w=\sqrt{\frac{g}{L}}

We have the length of the pendulum is L=0.81 meters, then we have

\displaystyle w=\sqrt{\frac{9.8}{0.81}}

\displaystyle w=3.478\ rad/sec

(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as

U=mgh

where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that

H+Y=L

And

H=L\ cos\alpha

Solving for Y

Y=L(1-cos\alpha )

Since\ \alpha=8.1^o, L=0.81\ m

Y=0.0081\ m

The potential energy is

U=mgh=0.23\ kg(9.8\ m/s^2)(0.0081\ m)

U=0.0182\ J

The mechanical energy is, then

M=K+U=0+U=U

M=0.0182\ J

(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know

\displaystyle K=\frac{mv^2}{2}

Equating to the mechanical energy of the system (M)

\displaystyle \frac{mv^2}{2}=0.0182

Solving for v

\displaystyle v=\sqrt{\frac{(2)(0.0182)}{0.23}}

v=0.398\ m/s

4 0
3 years ago
At the top of a pole vault, an athlete actually can do work pushing on the pole before releasing it. Suppose the pushing force t
Salsk061 [2.6K]

Answer:

The work done on the athlete is approximately 2.09 J

Explanation:

From the definition of the work done by a variable force:

\displaystyle{\int_{x_i}^{x_j}F(x)dx}

and substituting with the function of our problem:

\displaystyle{\int_{0}^{0.19}(140x-190x^2)dx\approx2.09\mathrm{J}}

5 0
3 years ago
Other questions:
  • An object of mass 11kg is falling in air and experiences a force due to air resistance of 35N. Determine the magnitude of net fo
    14·1 answer
  • A wire of length 26.0 cm carrying a current of 5.77 mA is to be formed into a circular coil and placed in a uniform magnetic fie
    10·1 answer
  • Help with 4 and 5 and also the one below... I WILL GIVE BRAINLIEST TO THE CORRECT ANSWER!
    6·2 answers
  • If a bicyclist is traveling at 40.0 km/hr for 2.5 hrs. How far does he travel?
    10·2 answers
  • Which diagram is the best representation of gas molecules in a closed container? A. Diagram A B. Diagram B C. Diagram C D. Diagr
    11·1 answer
  • Which of the following is not true about a vertical component? The vertical component of a projectile changes due to gravity. Th
    8·2 answers
  • Which physical property refers to the temperature at which a substance in a solid-state transforms to a liquid state?
    9·2 answers
  • A mole of a monatomic ideal gas at point 1 (101 kPa, 5 L) is expanded adiabatically until the volume is doubled at point 2. Then
    11·1 answer
  • Consider again the objects you ranked by distance. Suppose each object emitted a burst of light right now. Rank the objects from
    13·1 answer
  • To understand the behavior of the electric field at the surface of a conductor, and its relationship to surface charge on the co
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!