Answer:
a) 4.2m/s
b) 5.0m/s
Explanation:
This problem is solved using the principle of conservation of linear momentum which states that in a closed system of colliding bodies, the sum of the total momenta before collision is equal to the sum of the total momenta after collision.
The problem is also an illustration of elastic collision where there is no loss in kinetic energy.
Equation (1) is a mathematical representation of the the principle of conservation of linear momentum for two colliding bodies of masses
and
whose respective velocities before collision are
and
;

where
and
are their respective velocities after collision.
Given;

Note that
=0 because the second mass
was at rest before the collision.
Also, since the two masses are equal, we can say that
so that equation (1) is reduced as follows;

m cancels out of both sides of equation (2), and we obtain the following;

a) When
, we obtain the following by equation(3)

b) As
stops moving
, therefore,

The mass of 1.0 l of water in grams is 1,000 g ;)
It would b 6 days and 6 hours
You would times 16 by 8 which gives 128km a day. To find how many days you would divide 800 by how many kilometres they cover a day which is 128
So 800/128 =6.25 which converts to 6 days and 6 hours.
Well im not sure if this is the correct dating materials but here are some examples of Fundamentals of radiometric dating<span>Radioactive decay.
Accuracy of radiometric dating.
Closure temperature.
The age equation.
Uranium–lead dating method.
Samarium–neodymium dating method.
Potassium–argon dating method.
<span>Rubidium–strontium dating method.</span></span>