consider east-west direction along X-axis and north-south direction along Y-axis
= velocity of migrating robin relative to air = 12 j m/s
(where "j" is unit vector in Y-direction)
= velocity of air relative to ground = 6.3 i m/s
(where "i" is unit vector in X-direction)
= velocity of migrating robin relative to ground = ?
using the equation
=
+ 
= 12 j + 6.3 i
= 6.3 i + 12 j
magnitude : sqrt((6.3)² + (12)²) = 13.6 m/s
direction : tan⁻¹(12/6.3) = 62.3 deg north of east
The mean may be calculated by summing the values of the refractive index and dividing the sum by the number of experiments. This is:
Mean = (1.45 + 1.56 + 1.54 + 1.44 + 1.54 + 1.53)/6
Mean = 1.51
The mean absolute error is the sum of the absolute values of errors divided by the number of trials:
MAE = (|1.45-1.51|+|1.56-1.51|+|1.54-1.51|+|1.44-1.51|+|1.54-1.51|+|1.53-1.51|)/6
MAE = 0.043
The fractional error is the MAE divided by the actual value:
Fractional error = 0.043 / 1.51
Fractional error = 43/1510
The percentage error is the fractional error multiplied by 100:
Percentage error = 2.85%
Answer:
wouldn't it be 25 miles?? yeah
Explanation:
Answer:
240m/s
Explanation:
The equation to calculate is wavelength= velocity/ frequency so to find the velocity you would have to multiply frequency by wavelength.
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.