<h2>
Time taken is 0.632 seconds</h2>
Explanation:
Impulse momentum theorem is change in momentum is impulse.
Change in momentum = Impulse
Final momentum - Initial momentum = Impulse
Mass x Final velocity - Mass x Initial Velocity = Force x Time
Mass x Final velocity - Mass x Initial Velocity =Mass x Acceleration x Time
Final velocity - Initial Velocity = Acceleration x Time
Final velocity = 9.9 m/s
Initial Velocity = 3.7 m/s
Acceleration = 9.81 m/s²
Substituting
9.9 - 3.7 = 9.81 x Time
Time = 0.632 seconds
Time taken is 0.632 seconds
Answer:
The voltage drop across the bulb is 115 V
Explanation:
The voltage drop equation is given by:

Where:
ΔW is the total work done (4.6kJ)
Δq is the total charge
We need to use the definition of electric current to find Δq

Where:
I is the current (2 A)
Δt is the time (20 s)


Then, we can put this value of charge in the voltage equation.

Therefore, the voltage drop across the bulb is 115 V.
I hope it helps you!
Answer:
The time it takes the ball to stop is 0.021 s.
Explanation:
Given;
mass of the softball, m = 720 g = 0.72 kg
velocity of the ball, v = 15.0 m/s
applied force, F = 520 N
Apply Newton's second law of motion, to determine the time it takes the ball to stop;

Therefore, the time it takes the ball to stop is 0.021 s.
Answer:
14869817.395 m
Explanation:
=22 microarcsecond
λ = Wavelength = 1.3 mm
Converting to radians we get

From Rayleigh Criterion

Diameter of the effective primary objective is 14869817.395 m
It is not possible to build one telescope with a diameter of 14869817.395 m. But, we need this type of telescope. So, astronomers use an array of radio telescopes to achieve a virtual diameter in order to observe objects that are the size of supermassive black hole's event horizon.