Sound travels through waves, more specifically, through vibrations. They do not go from skull to ear, but they can go from ear to brain, or skull to brain. Ear to brain is simply vibrations traveling from outer ear, to inner ear, to the brain. Skull to brain, otherwise known as "bone conduction", has the vibrations hitting the skull, then to the temproal bone, then to the inner ear where the brain picks it up.
Answer:
1. G.P.E = 24 J
2. center of mass
Explanation:
Given the following data;
Mass = 2kg
Height, h = 1.2m
Acceleration due to gravity = 9.8 N/kg or m/s².
To find the gravitational potential energy;
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;

Where;
- G.P.E represents potential energy measured in Joules.
- m represents the mass of an object.
- g represents acceleration due to gravity measured in meters per seconds square.
- h represents the height measured in meters.
Substituting into the formula, we have;

G.P.E = 23.52 to 2 S.F = 24 Joules.
Translation kinetic energy is defined as the energy of a system due to the motion of the system’s center of mass. The center of mass is typically where the mass of the object or particle is concentrated.
Answer:
Decreases the time period of revolution
Explanation:
The time period of Cygnus X-1 orbiting a massive star is 5.6 days.
The orbital velocity of a planet is given by the formula,
v = √[GM/(R + h)]
In the case of rotational motion, v = (R +h)ω
ω = √[GM/(R + h)] /(R +h)
Where 'ω' is the angular velocity of the planet
The time period of rotational motion is,
T = 2π/ω
By substitution,
<em>T = 2π(R +h)√[(R + h)/GM] </em>
Hence, from the above equation, if the mass of the star is greater, the gravitational force between them is greater. This would reduce the time period of revolution of the planet.
The force acting on the ball are unbalanced. Reactionary momentum force (that originated as a result of the swing of the bat) is the most powerful.
Yes friction is acting on the ball. In course of journey it would slow the ball down and make it trace a parabolic path rather than straight path as intended by hitter.
Explanation:
As the hitter hits the ball, momentum of the bat due to swing (mass of the bat*velocity provided by the batsman swinging action of bat) gets transferred on the ball on its impact with the bat.
Since ball’s mass is quite small as compared to the bat, the velocity of the ball increases by the same factor by which the ball’s mass is lower than the bat’s mass. This velocity causes forward motion of the ball (of course in the direction of bat’s motion, here the batsman intends to send the ball straight away hence the ball would move straight).
Various forces on ball is-
- Reactionary momentum force -bat’s force (most powerful force)
- The frictional force of the air (opposing the motion of the ball through the air)
- Gravity force (pulling the ball down to the Earth)
As a combined effect of these force when all the force remains unbalanced, the ball moves away in the straight path under the impact of bats momentum which was most powerful of all.
Frictional force and Gravity force continue acting on the ball. While frictional forces decrease the ball velocity through the air, gravity force pulls it down thus deflecting its direction. Under the combined impact of declining bats momentum, friction force and gravity force, the ball traces a parabolic path (in accordance with the first law of motion from Newton)