1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
3 years ago
14

How can a heat pump warm a house by causing a refrigerant to evaporate and condense

Physics
1 answer:
sveta [45]3 years ago
4 0
The hot discharge gas from the refrigerant compressor is normally cooled and condensed at high pressure. This is then passed through an 'Expansion' valve which decreases the pressure to a low level causing expansion of the refrigerant liquid. 
<span>The liquid partially vapourises causing a 'Joule's/Thompson' refrigeration effect' which decreases temperature of the refrigerant which then passes to an evaporator coil in the air circulation system of the building. </span>
<span>In the evaporator coil, the heat exchange between the cold refrigerant and the warm air of the building, vaporises and heats the refrigerant which returns to the compressor. </span>
<span>The cycle is repeated until the air temperature reaches the thermostat set-point and switches off the system. </span>

<span>As a Heat pump, the hot refrigerant gas is not evaporating and condensing. </span>
<span>From the compressor discharge, the hot gas is by-passing the cooler/condenser unit and the expansion valve and passes directly to the 'evaporator' coils but now, as the heating medium for the air circulation system where it's cooled by the heat exchange between the hot gas and the cooler air in the building and returns to the compressor in a continuous cycle. </span>

<span>A Thermostat in the system starts and stops the compressor motor according to the heat or cool temperature settings.</span>
You might be interested in
Based on the law of conservation of energy, how can we reasonably improve a machine’s ability to do work?
MrMuchimi

D. Redefine the machine’s system boundaries.

The Law of Conservation of Energy states that energy can't be created not destroyed. Energy, however, can be changed from one form to another. The law applies to isolated systems only. By redefining and expanding the system (including all factors affecting it) , the machine's ability to do work should improve.

7 0
3 years ago
Read 2 more answers
A 0.0663 kg ingot of metal is heated to 241◦C
Westkost [7]

Answer:280.216j/kg°C

Explanation:

Mass of metal=0.0663kg

mass of water=0.395kg

Final temperature=27.4°C

Temperature of metal=241°C

Temperature of water=25°C

specific heat capacity of water=4186j/kg°C

0.0663xax(241-27.4)=0.395x4186x(27.4-25)

0.0663xax213.6=0.395x4186x2.4

14.16168a=3968.328

a=3968.328 ➗ 14.16168

a=280.216j/kg°C

4 0
3 years ago
A solid disk of radius 1.4 cm and mass 430 g is attached by a wire to one of its circular faces. It is twisted through an angle
Neporo4naja [7]

Answer:

    f= 4,186  10²  Hz

Explanation:

El sistema descrito es un pendulo de torsión que oscila con con velocidad angular, que esta dada por

             w = √ k/I

donde ka es constante de torsion de hilo e I es el momento de inercia del disco

El  momento de inercia de indican que giran un eje que pasa                 por enronqueces

           I= ½ M R2  

reduzcamos las cantidades al sistema SI

         R= 1,4 cm = 0,014  m

         M= 430 g = 0,430 kg

substituimos

           w= √ (2 k/M R2)

calculemos  

           w = RA ( 2 370 / (0,430  0,014 2)

           w = 2,963 103 rad/s

la velocidad angular esta relacionada con la frecuencia por

            w =2pi f

            f= w/2π

            f= 2,963 10³/ (2π)

            f= 4,186  10²  Hz

5 0
3 years ago
A sealed test tube traps 25.0 cm3 of air at a pressure of 1.00 atm and temperature of 18°C. The test tube’s stopper has a diamet
puteri [66]

Answer:

180° C

Explanation:

First we start by finding the area of the stopper.

A = πd²/4, where d = 1.5 cm = 0.015 m

A = 3.142 * 0.015² * ¼

A = 1.767*10^-4 m²

Next we find the force on the stopper

F = (P - P•)A, where

F = 10 N

P = pressure inside the tube,

P• = 1 atm

10 = (P - 101325) * 1.767*10^-4

P - 101325 = 10/1.767*10^-4

P - 101325 = 56593

P = 56593 + 101325

P = 157918 Pascal

Now, remember, in an ideal gas,

P1V1/T1 = P2V2/T2, where V is constant, then we have

P1/T1 = P2/T2, and when we substitute the values, we have

101325/(273 + 18) = 157918/ T2

101325/291 = 157918/ T2

T2 = (157918 * 291)/101325

T2 = 453 K

T2 = 453 - 273 = 180° C

3 0
3 years ago
An astronaut is moving in space when a big explosion occurs about 50 meters behind him. How will the astronaut come to know abou
LUCKY_DIMON [66]

Answer:

The correct answer is B.

The astronaut will know due to the light from the explosion.

Explanation:

Sound and vibrations require a medium such as air to travel through. Space, there is no air. Only a vacuum. So sound and vibrations are unable to travel. Light requires no medium to travel. It can go through a vacuum.  

Therefore the Astronaut will see a bright flash of light as it travels from the explosion to outer space. It is also important to note that light can travel very far because nothing else interacts with its wave particles and as such, it cannot be impeded.

Cheers!

7 0
3 years ago
Other questions:
  • A student is pouring equal amounts of water, maple syrup, and cooking oil into a glass beaker and looking at how the layers sett
    15·1 answer
  • What constant acceleration in si units must a car have to go from zero to 60 mph in 10s. what fraction of g is this? How far has
    5·1 answer
  • If a beaker of water is placed under a broiler so that the heating coil is above the beaker. It is observed that only the surfac
    7·1 answer
  • Which of the following factors can affect the rate of soil formation?
    10·1 answer
  • A ball is thrown horizontally from a 90 m cliff and strikes the ground 70 m from the base, what is the initial velocity?
    10·1 answer
  • PLEASE HELP
    10·1 answer
  • If a 50 kg student is standing on the edge of a cliff. Find the student’s gravitational potential energy if the cliff is 80 m hi
    7·1 answer
  • Two metal bricks are held off the edge of a balcony from the same height above the ground. The bricks are the same size but one
    10·1 answer
  • What is used to measure the amount of sunshine ​
    12·2 answers
  • Please answer the following two questions.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!