Answer:
F = 2.26 × 10⁻³ N
Explanation:
given,
length of rod = 11 cm
charge = 19 nC
linear charge density = 3.9 x 10⁻⁷ C/m
electric force at 2 cm away.

F = E q

integrating from 0.02 to 0.02 + L
![F= \dfrac{2K\lambda\ q}{L}[ln(0.02+L)-ln(0.002)]](https://tex.z-dn.net/?f=F%3D%20%5Cdfrac%7B2K%5Clambda%5C%20q%7D%7BL%7D%5Bln%280.02%2BL%29-ln%280.002%29%5D)
![F= \dfrac{2\times 9 \times 10^9\times 3.9\times 10^{-7}\times 19 \times 10^{-9}}{0.11}[ln(0.02+0.11)-ln(0.002)]](https://tex.z-dn.net/?f=F%3D%20%5Cdfrac%7B2%5Ctimes%209%20%5Ctimes%2010%5E9%5Ctimes%203.9%5Ctimes%2010%5E%7B-7%7D%5Ctimes%2019%20%5Ctimes%2010%5E%7B-9%7D%7D%7B0.11%7D%5Bln%280.02%2B0.11%29-ln%280.002%29%5D)
F = 2.26 × 10⁻³ N
Answer:
total time =4.583 hour
Explanation:
We have given total distance = 60 mi
It is given that half of the distance traveled by a speed of 8 mph
We know that 
And second half of the distance traveled by a speed of 36 mph
So time 
So total time = 3.75 + 0.833 =4.583 hour
Answer:
We know that the acceleration of the particle is defined as

Since it is given that

Now by definition of velocity we have

Integrating on both sides we get

Applying values we get

To find the constant we note that at t=1 the particle is at x=12 Thus applying values in the above equation we get
