Answer:
5 weeks and 5 days is required to empty the lake
Explanation:
Officials begin the remove water from a full man made lake
The lake can be emptied in 4 weeks
= -1/4
A river can fill the lake up in 15 weeks
= 1/15
Let t represent the number of weeks that is required to empty the lake
= -1/t
Therefore the number of weeks it takes to empty the lake can be calculated as follows
-1/t= -1/4 + 1/15
-1/t= -11/60
Cross multiply
-11×t= -1×60
-11t= -60
t = 60/11
t= 5 5/11
Hence it takes 5 weeks and 5 days to empty the lake
A mechanical wave<span> is a </span>wave<span> that is an oscillation of </span>matter<span>, and therefore transfers energy through a </span>medium.[1]<span> While waves can move over long distances, the movement of the </span>medium of transmission<span>—the material—is limited. Therefore, oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave. Any kind of wave (mechanical or electromagnetic) has a certain energy. Mechanical waves can be produced only in media which possess elasticity and inertia.</span>
Your potential energy and mass don't tell what your weight is.
If I walk up from the first floor to the second floor, my weight hasn't
changed even though my potential energy has increased.
m = mass of the penny
r = distance of the penny from the center of the turntable or axis of rotation
w = angular speed of rotation of turntable
F = centripetal force experienced by the penny
centripetal force "F" experienced by the penny of "m" at distance "r" from axis of rotation is given as
F = m r w²
in the above equation , mass of penny "m" and angular speed "w" of the turntable is same at all places. hence the centripetal force directly depends on the radius .
hence greater the distance from center , greater will be the centripetal force to remain in place.
So at the edge of the turntable , the penny experiences largest centripetal force to remain in place.
Answer:
from
force =mass x acceleration
mass = force/acceleration
m = f/a
m = 7.5/15
m=0.5kg