The pressure exerted by a fluid solely relies on the depth or height of the fluid, its density, and the gravitational constant. These three are related in the equation:
Pressure = density x g x height
In the problem, point A is within the block inside the tank. The water above the block is assumed to be 0.6 meters. This gives a point A pressure of:
P = 1000 kg/m^3 * 9.81 m/s^2 * 0.6 m = 5,886 Pa or 5.88KPa
The heat and energy of coal burning is more easier and more efficient to turn into electricity than any method using renewable resources.
Answer:
255 Hz
Explanation:
With 5 beats per second with the 250 Hz fork, we know the unknown fork is either 250 - 5 = 245Hz or 250 + 5 = 255 Hz
With 15 beats per second with the 270 Hz fork, we know the unknown fork is either 270 - 15 = 255Hz or 270 + 15 = 285 Hz (most people would have a hard time discerning 15 beats per second... 5 per second is hard enough)
As 255 is the common frequency, it is the one selected.
Answer:
10.01 cm
Explanation:
Given that,
The time delay between transmission and the arrival of the reflected wave of a signal using ultrasound traveling through a piece of fat tissue was 0.13 ms.
The average propagation speed for sound in body tissue is 1540 m/s.
We need to find the depth when the reflection occur. We know that, the distance is double when transmitting and arriving. So,

or
d = 10.01 cm
So, the reflection will occur at 10.01 cm.
Answer:

Explanation:
The change in electrical potential energy of a charged particle moving through a potential difference is given by

where
q is the magnitude of the charge of the particle
is the potential difference
In this problem:
- the charge of the particle is 3.00 elementary charges, so

- the potential difference is

So, the change in electrical potential energy is
