Answer:

Explanation:
Given:
mass of the wire, 
length of the wire, 
current in the wire, 
Now form the Lorentz force we know that every current carrying wire experiences a magnetic force on it due to the magnetic field components perpendicular to it.
Mathematically given as:


here: we nee to balance the gravitational force on the mass.
magnetic field


This magnetic field must be perpendicular to the direction of current in the wire and the these two directional quantities must lie in a plane normal to the direction of gravity according to the Fleming's left hand rule.
To solve this problem we will apply the concepts related to the linear kinematic movement. We will start by finding the speed of the body from time and the acceleration given.
Through the position equations we will calculate the distance traveled.
Finally, using this same position relationship and considering the previously found speed, we can determine the time to reach your goal.
For time (t) and acceleration (a) we have to,

The velocity would be,

Now the position is,



Now with the initial speed and position found we will have the time is,



Solving the polynomian we have,

Therefore the rocket will take to hit the ground around to 4.56min
Answer:
The car will make the turn perfectly
Explanation:
Given that the centripetal force= mv^2/r
M= mass of the car
v = speed of the car
r= radius
Hence;
F = 1000 × (14)^2/50
F= 3920 N
The frictional force = μmg
μ = coefficient of static friction
m= mass
g = acceleration due to gravity
Frictional force= 0.6 × 1000× 10
Frictional force = 6000 N
The car will not skid off the curve because the frictional force is greater than the centripetal force.
The bimetallic strip in a fire alarm is made of two metals with different expansion rates bonded together to form one piece of metal. Typically, the low-expansion side is made of a nickel-iron alloy called Invar, while the high-expansion side is an alloy of copper or nickel. The strip is electrically energized with a low-voltage current. When the strip is heated by fire, the high-expansion side bends the strip toward an electrical contact. When the strip touches that contact, it completes a circuit that triggers the alarm to sound. The width of the gap between the contacts determines the temperature that will set off the alarm.
Explanation:
Ohm's law describes the relationship between voltage, current, and resistance.
V = IR
where V is voltage, I is current, and R is resistance.
A. At the original voltage:
V₁ = I₁ R₁
When the voltage is doubled and resistance stays the same:
2V₁ = I₁' R₁
Dividing the two equations:
2V₁ / V₁ = (I₁' / I₁) (R₁ / R₁)
2 = I₁' / I₁
So the new current is double the original current.
B. At the original voltage and resistance:
V₂ = I₂ R₂
When both the voltage and resistance are increased by a factor of 2:
2V₂ = I₂' (2R₂)
Dividing the two equations:
(2V₂ / V₂) = (I₂' / I₂) (2R₂ / R₂)
2 = (I₂' / I₂) (2)
1 = I₂' / I₂
So the new current is the same as the original current.