Answer:
50 N
Explanation:
Let the force in the horizontal rope be F₁ and the force in the diagonal rope be F₂:
The total force in the horizontal and vertical directions must be zero, since the object is at rest and is not accelerating.
The horizontal component of the forces:
F₁ + F₂ = -40N + F₂ = 0
F₂ = 40N
The vertical component of the forces:
F₁ + F₂ - mg = 0 + F₂ - mg = 0
F₂ = mg
If I assume the gravitational constant g = 10 m/s²:
F₂ = (3 kg) * (10 m/s²) = 30N
Adding the horizontal and vertical components of the force F₂:
F₂ = √((40N)² + (30N)²) = 50N
Answer:
Explanation:
When the apple is held submerged in water , it experiences a buoyant force due to which it floats in water . One has to apply downward force to keep it submerged. The lower the buoyant force , lower the force needed to submerge it in water.
When apple is held at much deeper point , it experience greater pressure due to column of water around it . So its size or its volume decreases . But its weight remains the same . Due to less volume , buoyant force also decreases ( buoyant force is equal to weight of displaced volume of water. )
Due to buoyant force becoming less , force needed on apple in downward direction will also be less.
Answer:
A ball being dropped to the ground
Answer:
8 seconds
Explanation:
power (P) is defined as the rate at which work is done.
power is measured in Watts (W) , when the work done is measured in Joules (J) and time in seconds
by the definition of power,
