Answer
given.
Mass of big fish = 15 Kg
speed of big fish = 1.10 m/s
mass of the small fish = 4.50 Kg
speed of the fish after eating small fish =?
a) using conservation of momentum
m₁v₁ + m₂v₂ = (m₁+m₂) V
15 x 1.10 + 4.50 x 0 = (15 + 4.5)V
16.5 = 19.5 V
V = 0.846 m/s
b) Kinetic energy before collision


KE₁ = 9.075 J
Kinetic energy after collision

KE₂ = 6.98 J
Change in KE = 6.98 - 9.075 = -2.096 J
hence,
mechanical energy was dissipated during this meal = -2.096 J
Answer:
√35 square units
Explanation:
Area of square = 35square units
Formula of area of square is a =s*s where a is area and s is side
So,
s*s = 35
s^2= 35
s = √35
tell me if this is the answer u r looking for
Answer:
Yes, you are pulling on Earth. Reasoning. Third Newton's law of motion, action and reaction law, sates that for every action force, there is an equal (in magnitude) and opposite reaction force.
Explanation:
goo gle.
Answer:
Explanation:
Apply the law of conservation of energy

![Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)](https://tex.z-dn.net/?f=Gm_1m_2%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D%3D%5Cfrac%7B1%7D%7B2%7D%20%28m_1v_1%5E2%2Bm_2v_2%5E2%29)
from the law of conservation of the linear momentum

Therefore,
![Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)](https://tex.z-dn.net/?f=Gm_1m_2%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D%3D%5Cfrac%7B1%7D%7B2%7D%20%28m_1v_1%5E2%2Bm_2v_2%5E2%29)
![=\frac{1}{2} [m_1v_1^2+m_2[\frac{m_1v_1}{m_2} ]^2]\\\\=\frac{1}{2} [m_1v_1^2+\frac{m_1^2v_1^2}{m_2} ]\\\\=\frac{m_1v_1^2}{2} [\frac{m_1+m_2}{m_2} ]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bm_1v_1%5E2%2Bm_2%5B%5Cfrac%7Bm_1v_1%7D%7Bm_2%7D%20%5D%5E2%5D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bm_1v_1%5E2%2B%5Cfrac%7Bm_1%5E2v_1%5E2%7D%7Bm_2%7D%20%5D%5C%5C%5C%5C%3D%5Cfrac%7Bm_1v_1%5E2%7D%7B2%7D%20%5B%5Cfrac%7Bm_1%2Bm_2%7D%7Bm_2%7D%20%5D)
![v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]](https://tex.z-dn.net/?f=v_1%5E2%3D%5B%5Cfrac%7B2Gm_2%5E2%7D%7Bm_1%2Bm_2%7D%20%5D%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D)
Substitute the values in the above result
![v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]](https://tex.z-dn.net/?f=v_1%5E2%3D%5B%5Cfrac%7B2Gm_2%5E2%7D%7Bm_1%2Bm_2%7D%20%5D%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D)
![=[\frac{2(6.67\times 10^-^1^1)(107)^2}{27+107} ][\frac{1}{26} -\frac{1}{41}] \\\\=1.6038\times 10^-^1^0\\\\v_1=\sqrt{1.6038\times 106-^1^0} \\\\=1.2664 \times 10^-^5m/s](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B2%286.67%5Ctimes%2010%5E-%5E1%5E1%29%28107%29%5E2%7D%7B27%2B107%7D%20%5D%5B%5Cfrac%7B1%7D%7B26%7D%20-%5Cfrac%7B1%7D%7B41%7D%5D%20%5C%5C%5C%5C%3D1.6038%5Ctimes%2010%5E-%5E1%5E0%5C%5C%5C%5Cv_1%3D%5Csqrt%7B1.6038%5Ctimes%20106-%5E1%5E0%7D%20%5C%5C%5C%5C%3D1.2664%20%5Ctimes%2010%5E-%5E5m%2Fs)
B) the speed of the sphere with mass 107.0 kg is

\\\\=3.195\times 10^-^6m/s](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B27%7D%7B107%7D%20%5D%281.2664%20%5Ctimes%2010%5E-%5E5%29%5C%5C%5C%5C%3D3.195%5Ctimes%2010%5E-%5E6m%2Fs)
C) the magnitude of the relative velocity with which one sphere is

D) the distance of the centre is proportional to the acceleration

Thus,

and

When the sphere make contact with eachother
Therefore,

And

The point of contact of the sphere is

Answer:
Time, t = 13.34 seconds.
Explanation:
Given the following data;
Initial velocity, u = 85km/hr to meters per seconds = 85*1000/3600 = 23.61 m/s
Final velocity, v = 45km/hr to meters per seconds = 45*1000/3600 = 12.5 m/s
Acceleration, a = -3 km/hr/sec to meters per seconds square = -3*1000/3600 = -0.833m/s²
To find the time;
Acceleration = (v - u)/t
-0.833 = (12.5 - 23.61)/t
-0.833t = -11.11
t = 11.11/0.833
Time, t = 13.34 seconds.