1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anzhelika [568]
3 years ago
10

A small sphere with mass m is attached to a massless rod of length L that is pivoted at the top, forming a simple pendulum. The

pendulum is pulled to one side so that the rod is at an angle θ from the vertical, and released from rest.
a. Show the pendulum just after it is released. Draw vectors representing the forces acting on the small sphere and the acceleration of the sphere. Accuracy counts! At this point, what is the linear acceleration of the sphere?
b. Repeat part (a) for the instant when the pendulum rod is at an angle 9/2 from the vertical.
c. Repeat part (a) for the instant when the pendulum rod is vertical. At this point, what is the linear speed of the sphere?

Physics
1 answer:
USPshnik [31]3 years ago
4 0

Answer:

a) see attached, a = g sin θ

b)

c)   v = √(2gL (1-cos θ))

Explanation:

In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by

          Wₓ = m a

          W sin θ = m a

          a = g sin θ

b) The diagram is the same, the only thing that changes is the angle that is less

                θ' = 9/2  θ

             

c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.

The easiest way to find linear speed is to use conservation of energy

Highest point

            Em₀ = mg h = mg L (1-cos tea)

Lowest point

          Emf = K = ½ m v²

          Em₀ = Emf

          g L (1-cos θ) = v² / 2

              v = √(2gL (1-cos θ))

You might be interested in
Find the final velocity if the initial velocity of 8 m/s with an acceleration of 7 m/s2 over a 3 second interval?
LenKa [72]

I don't know about it your answer will give another people

5 0
2 years ago
Read 2 more answers
projectile motion of a particle of mass M with charge Q is projected with an initial speed V in a driection opposite to a unifor
SIZIF [17.4K]

Answer:

Range, R = MV²/2QE

Explanation:

The question deals with the projectile motion of a particle mass M with charge Q, having an initial speed V in a direction opposite to that of a uniform electric field.

Since we are dealing with projectile motion in an electric field, the unknown variable here, would be the range, R of the projectile. We note that the electric field opposes the motion of the particle thereby reducing its kinetic energy. The particle stops when it loses  all its kinetic energy due to the work done on it in opposing its motion by the electric field. From work-kinetic energy principles, work done on charge by electric field = loss in kinetic energy of mass.

So, [tex]QER = MV²/2{/tex} where R is the distance (range) the mass moves before it stops

Therefore {tex}R = MV²/2QE{/tex}

5 0
3 years ago
outward from a wall just above floor level. A 1.5 kg box sliding across a frictionless floor hits the end of the spring and comp
sweet [91]

Answer:

v = 0.489 m/s

Explanation:

It is given that,

Mass of a box, m = 1.5 kg

The compression in the spring, x = 6.5 cm = 0.065 m

Let the spring constant of the spring is 85 N/m

We need to find the velocity of the box (v) when it hit the spring. It is based on the conservation of energy. The kinetic energy of spring before collision is equal to the spring energy after compression i.e.

\dfrac{1}{2}mv^2=\dfrac{1}{2}kx^2

v=\sqrt{\dfrac{kx^2}{m}} \\\\v=\sqrt{\dfrac{85\times (0.065)^2}{1.5}} \\\\v=0.489\ m/s

So, the speed of the box is 0.489 m/s.

3 0
3 years ago
What is the direction of the force on a positive charge when passing through a magnetic field as indicated in this diagram? Expl
maria [59]

Answer:

The direction of the magnetic force on a moving charge is perpendicular to the plane formed by v and B and follows right hand rule–1 (RHR-1)

Explanation:

hope this helps

3 0
3 years ago
An object of mass, m1 with a velocity, v1 collides with another object at rest (v2 = 0) with a mass, m2. After the collision, m1
goblinko [34]

Answer:

v"_{1} = v_{1} tanΘ

v^{"} _{2} = \frac{m_{1}v_{1}}{m_{2}cos}Θ

Θ = tan^{-1}(\frac{v^{"} _{1} }{v_{1} } )

Explanation:

Applying the law of conservation of momentum, we have:

Δp_{x = 0}

p_{x} = p"_{x}

m_{1}v_{1} = m_{2}v"_{2} cosΘ (Equation 1)

Δp_{y} = 0

p_{y} = p"_{y}

0 = m_{1} v"_{1} - m_{2} v"_{2} sinΘ (Equation 2)

From Equation 1:

v"_{2} = \frac{m_{1}v_{1}}{m_{2}cos}Θ

From Equation 2:

m_{2} v"_{2}sinΘ = m_{1} v_{1}

v"_{1} = \frac{m_{2} v"_{2}sinΘ}{m_{1} }

Replacing Equation 3 in Equation 4:

v"_{1}=\frac{m_{2}\frac{m_{1}v_{1}}{m_{2}cosΘ}sinΘ}{m_{1}}

v"_{1}=v_{1}\frac{sinΘ}{cosΘ}

v"_{1}=v_{1}tanΘ (Equation 5)

And we found Θ from the Equation 5:

tanΘ=\frac{v"_{1}}{v_{1}}

Θ=tan^{-1}(\frac{v"_{1}}{v_{1}})

7 0
3 years ago
Other questions:
  • Read the given list of organisms.
    5·2 answers
  • If the charge remains the same but the radius of the sphere is doubled, the electric flux coming out of it will be
    9·1 answer
  • When vibrational motion in an object increases, which is a true statement?
    6·2 answers
  • Coulomb's law is expressed mathematically as
    10·1 answer
  • Why are magnetic fields evidence of sea floor spreading
    13·1 answer
  • Umar has two copper pans, each containing 500cm3 of water. Pan A has a mass of 750g and pan B has a mass of 1.5kg. Which pan wil
    12·1 answer
  • A parallel-plate capacitor has plates of area A. The plates are initially separated by a distance d, but this distance can be va
    13·1 answer
  • A tracking station on Earth observes a rocket move away at 0.370c. This rocket is designed to launch a projectile at 0.505c rela
    7·1 answer
  • The aqueous humor in a person's eye is exerting a force of 0.242 N on the 1.21 cm2 area of the cornea. What pressure is this in
    10·1 answer
  • Which statement best describes energy and matter in a closed system?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!