Answer:
Acceleration of the object is .
Explanation:
It is given that, the position of the object is given by :
Velocity of the object,
Acceleration of the object is given by :
Using the property of differentiation, we get :
So, the magnitude of the acceleration of the object at time t = 2.00 s is . Hence, this is the required solution.
Answer:
a) They are in the same point
b) t = 0 s, t = 2.27 s, t = 5.73 s
c) t = 1 s, t = 4.33 s
d) t = 2.67 s
Explanation:
Given equations are:
Constants are:
a) "Just after leaving the starting point" means that t = 0. So, if we look the equations, both and depend on t and don't have constant terms.
So both cars A and B are in the same point.
b) Firstly, they are in the same point in x = 0 at t = 0. But for generalized case, we must equalize equations and solve quadratic equation where roots will give us proper t value(s).
s, s
c) Since the distance isn't changing, the velocities are equal. To find velocities, we need to take the derivatives of both equations with respect to time and equalize them.
s, s
d) For same acceleration, we we need to take the derivatives of velocity equations with respect to time and equalize them.
s
It contains protease which is the enzyme that breaks down protein
This question is incomplete, the complete question is;
A parallel-plate capacitor is made from two aluminum-foil sheets, each 3.0 cm wide and 5.00 m long. Between the sheets is a mica strip of the same width and length that is 0.0225 mm thick. What is the maximum charge?
(The dielectric constant of mica is 5.4, and its dielectric strength is 1.00×10⁸ V/m)
Answer: the maximum charge q is 716.85 μF
Explanation:
Given data;
with = 3.0 cm = 0.03
breathe = 5.0 m
Area = 0.03 × 5 = 0.15 m²
dielectric strength E = 1.00 × 10⁸
∈₀ = 8.85 × 10⁻¹²
constant K = 5.4
maximum charge = ?
the capacitor C = KA∈₀ / d
q = cv so c = q/v
now
q/v = KA∈₀ / d
q = vKA∈₀/d = EKA∈₀
we substitute
q = (1.00 × 10⁸) × 5.4 × 0.15 × 8.85 × 10⁻¹²
q = 716.85 × 10⁻⁶ F
q = 716.85 μF
the maximum charge q is 716.85 μF
Answer:
3600 kg
Explanation:
From the question,
Density = Mass/Volume
D = M/V.............................. Equation 1
Where D = Density of the substance, M = mass of the substance, V = Volume of the subtance.
Make M the subject of the equation
M = D×V ............................ Equation 2
Given: D = 1200 kg/m³, V = 3 m³.
Substitute these values into equation 2
M = 1200×3
M = 3600 kg.
Hence the mass of the substance is 3600 kg