Answer:
<em>The kinetic energy of a spinning disk will be reduced to a tenth of its initial kinetic energy if its moment of inertia is made five times larger, but its angular speed is made five times smaller.</em>
<em></em>
Explanation:
Let us first consider the initial characteristics of the angular motion of the disk
moment of inertia = 
angular speed = ω
For the second case, we consider the characteristics to now be
moment of inertia =
(five times larger)
angular speed = ω/5 (five times smaller)
Recall that the kinetic energy of a spinning body is given as

therefore,
for the first case, the K.E. is given as

and for the second case, the K.E. is given as


<em>this is one-tenth the kinetic energy before its spinning characteristics were changed.</em>
<em>This implies that the kinetic energy of the spinning disk will be reduced to a tenth of its initial kinetic energy if its moment of inertia is made five times larger, but its angular speed is made five times smaller.</em>
The thermal energy was produced is 116J
<h3>What is the thermal energy produced?</h3>
Now we know that the frictional force produces the energy that is lost as heat as the body slides down the incline. The magnitude of the frictional force is obtained from;
Ff= μmgcosθ
Ff = 0.65 * 5.0 kg * 9.8 m/s^2 * cos 25
Ff = 29 N
Hence, the thermal energy is;
29 N * 4.0 m = 116J
Learn more about frictional force:brainly.com/question/1714663
#SPJ1
Answer:
standing wave, also called stationary wave, combination of two waves moving in opposite directions, each having the same amplitude and frequency.
For oppositely moving waves, interference produces an oscillating wave fixed in space. fixed nodes in a standing wave. Location of fixed nodes in a standing wave
these are the points that undergo the maximum displacement during each vibrational cycle of the standing wave. In a sense, these points are the opposite of nodes, and so they are called antinodes. A standing wave pattern always consists of an alternating pattern of nodes and antinodes
Explanation:
Answer:
9.38 m/s
Explanation:
Mass is conserved.
m₁ = m₂
ρ₁ Q₁ = ρ₂ Q₂
Assuming no change in density:
Q₁ = Q₂
v₁ A₁ = v₂ A₂
v₁ π r₁² = v₂ π r₂²
v₁ r₁² = v₂ r₂²
Plugging in values:
(1.50 m/s) (0.0250 m)² = v (0.0100 m)²
v = 9.38 m/s
Answer would be c as shown in the photo