Answer:
0.0081T
Explanation:
The magnetic field B in the toroid is proportional to the applied current I and the number of turns N per unit length L of the toroid. i.e
B ∝ I 
B = μ₀ I
----------------(i)
Where;
μ₀ = constant of proportionality called the magnetic constant = 4π x 10⁻⁷N/A²
Since the radius (r = 4.2cm = 0.042m) of the toroid is given, the length L is the circumference of the toroid given by
L = 2π r
L = 2π (0.042)
L = 0.084π
The number of turns N = 1000
The current in the toroid = 1.7A
Substitute these values into equation (i) to get the magnetic field as follows;
B = 4π x 10⁻⁷ x 1.7 x
[cancel out the πs and solve]
B = 0.0081T
The magnetic field along the central radius is 0.0081T
Answer:
The acceleration will become zero
Explanation:
When the parachute of a falling soldier is opened the wide surface area decreases his velocity. This also translates to the drag force acting on the fallen soldier
The acceleration will become zero when the velocity of the fallen soldier is constant. This principle is the reason the parachute is used for safety reasons .
Answer:
2991.47 [cm^2]
Explanation:
To solve this problem we must perform a dimensional analysis and use the corresponding conversion values:
![3.22[ft^{2}]*\frac{12^{2}in^{2} }{1^{2}ft^{2}} *\frac{2.54^{2}cm^{2} }{1^{2}in^{2} } \\2991.47[cm^{2}]](https://tex.z-dn.net/?f=3.22%5Bft%5E%7B2%7D%5D%2A%5Cfrac%7B12%5E%7B2%7Din%5E%7B2%7D%20%7D%7B1%5E%7B2%7Dft%5E%7B2%7D%7D%20%2A%5Cfrac%7B2.54%5E%7B2%7Dcm%5E%7B2%7D%20%20%7D%7B1%5E%7B2%7Din%5E%7B2%7D%20%7D%20%5C%5C2991.47%5Bcm%5E%7B2%7D%5D)
Answer:
50 kg
Explanation:
fnet=ma
600-200=m8
divide both side by 8 to make m the subject of the formula Thus m=50kg