1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
3 years ago
15

A diathermy machine, used in physiotherapy, generates electromagnetic radiation that gives the effect of "deep heat" when absorb

ed in tissue. One assigned frequency for diathermy is 915.00 MHz. What is the wavelength of this radiation
Physics
2 answers:
olga nikolaevna [1]3 years ago
5 0

Answer:

The wavelength of the given radiation is 0.327 m

Explanation:

The wavelength and the frequency of a wave are related by the formula, given below:

v = fλ

where.

v = speed of wave

f = frequency of wave = 915 MHz = 915000000 Hz

λ = wavelength of the wave = ?

For the electromagnetic radiations we know that:

v = c = speed of light = 3 x 10^8 m/s

Therefore,

c = fλ

λ = c/f

λ = (300000000 m/s)/(915000000 Hz)

<u>λ = 0.327 m</u>

Dmitry_Shevchenko [17]3 years ago
3 0

Answer:

The wavelength of this radiation = 0.3279 m

Explanation:

For a wave, the speed (v), frequency (f) and the wavelength (λ) are related through the relation

v = fλ

f is given in the question as 915 MHz = (915 × 10⁶) Hz = (9.15 × 10⁸) Hz

v = speed of light = (3.0 × 10⁸) m/s (since electromagnetic waves/radiation travel with the speed of light)

λ = ?

λ = (v/f)

λ = (3.0 × 10⁸)/(9.15 × 10⁸)

λ = 0.3279 m

You might be interested in
An object, initially at rest, is subject to an acceleration of 34 m/s^2. How long will it take for that object to reach 3400m ?
Norma-Jean [14]
Vf^2 = Vi^2 + 2ad
a= 34 m/s^2
Vi = 0 m/s
d = 3400m

Vf = 480.83 m/s

a=v/t
t=v/a
t=480.83/34
t=14.142 s
6 0
3 years ago
Volleyball was invented in 1905.
Lady_Fox [76]

Answer:

REALLY??

Explanation:

8 0
2 years ago
Read 2 more answers
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
3 years ago
If there is an object in top of another object, why does the upper object exert a downward normal force?​
rusak2 [61]

Answer:

This is because normal force is exerted perpendicularly to the point of contact between the upper and lower objects.  

Explanation:

This is because the upper object is still subject to gravitational pull. Therefore, the amount of force it exerts on the lower object due to gravity will be equal to the normal force that acts in the negative direction of gravitational force. Additionally, normal force is evident because the upper object will not go into the lower object.

4 0
3 years ago
What is the relationship between area, force, and pressure? what is the relationship between area, force, and pressure? pressure
White raven [17]
Mathematically, relation between force, area and pressure is given by...
Pressure = force / area


hence, pressure is directly proportional to force but inversely proportional to area.
7 0
3 years ago
Other questions:
  • What sound frequency would the human ear not be able to detect?
    5·2 answers
  • N a scientific investigation, what is the name for a prediction that can be tested?
    15·1 answer
  • A 0.30-kg object is traveling to the right (in the positive direction) with a speed of 3.0 m/s. After a 0.20 s collision, the ob
    11·1 answer
  • A series RLC circuit with L = 13 mH, C = 3.6 µF, and R = 3.2 ohms is driven by a generator with a maximum emf of 120 V and a var
    11·1 answer
  • List several examples of gravity, magnetic force, and electric force that you’ve observed in your life
    14·1 answer
  • What happens to the magnitude of the gravitational force as the distance between two bodies increase?
    15·1 answer
  • A balloon contains helium gas. Which applies to the volume of the gas in the balloon when pressure is increased at constant temp
    12·1 answer
  • 6th grade science I mark as brainliest
    12·1 answer
  • Wegut.
    6·1 answer
  • Part 1- An ideal gas, initially at a volume of 1.71429 L and pressure of 7 kPa, undergoes isothermal expansion until its volume
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!