Answer:
The tension is 75.22 Newtons
Explanation:
The velocity of a wave on a rope is:
(1)
With T the tension, L the length of the string and M its mass.
Another more general expression for the velocity of a wave is the product of the wavelength (λ) and the frequency (f) of the wave:
(2)
We can equate expression (1) and (2):
=
Solving for T
(3)
For this expression we already know M, f, and L. And indirectly we already know λ too. On a string fixed at its extremes we have standing waves ant the equation of the wavelength in function the number of the harmonic
is:

It's is important to note that in our case L the length of the string is different from l the distance between the pin and fret to produce a Concert A, so for the first harmonic:

We can now find T on (3) using all the values we have:


Answer:
600,000,000 degree C
Explanation:
This stage is the last stage and is refereed to as supernova. In the beginning of this stage, gravity pulls the inner core and crush it, due to which fusion of atoms starts. Carbon and Oxygen fuse together and the temperature is about of 600,000,000 degree C.
The most heavier atom that can be formed out of this fusion is the iron. The moment all the atoms becomes of iron, no further fusion is possible hence that body emits radiation of high intensity and collapse causing a big supernova.
Coal is burned to get energy. By burning coal, green houses gases like carbon dioxide, nitrogen oxides and suphur oxides are produced.
Rest of the energy sources given in the option are clean energies.
Answer is A.
Is there more information ?
Answer:
Yes is large enough
Explanation:
We need to apply the second Newton's Law to find the solution.
We know that,

And we know as well that

Replacing the aceleration value in the equation force we have,

Substituting our values we have,


The weight of the person is then,


<em>We can conclude that force on the ball is large to lift the ball</em>