Answer:
The ratio of T2 to T1 is 1.0
Explanation:
The gravitational force exerted on each sphere by the sun is inversely proporational to the square of the distance between the sun and each of the spheres.
Provided that the two spheres have the same radius r, the pressure of solar radiation too, is inversely proportional to the square of the distance of each sphere from the sun.
Let F₁ and F₂ = gravitational force of the sun on the first and second sphere respectively
P₁ and P₂ = Pressure of solar radiation on the first and second sphere respectively
M = mass of the Sun
m = mass of the spheres, equal masses.
For the first sphere that is distance R from the sun.
F₁ = (GmM/R²)
P₁ = (k/R²)
T₁ = (F₁/P₁) = (GmM/k)
For the second sphere that is at a distance 2R from the sun
F₂ = [GmM/(2R)²] = (GmM/4R²)
P₂ = [k/(2R)²] = (k/4R²)
T₂ = (F₂/P₂) = (GmM/k)
(T₁/T₂) = (GmM/k) ÷ (GmM/k) = 1.0
Hope this Helps!!!
<span>Social
i think so ,but i am not sure</span>
Potential energy is the store she energy from an object this could include rubber bands. Kinetic energy is the energy that deals with motion a good example is a person running
The answer is:
V = d/t d = 86 km t = 1.3 hrs
V = 86 km/ 1.3 hrs
V = 66.15 km/ hrs
I hope this helps!!
Answer:
Electric field, E = 0.064 V/m
Explanation:
It is given that,
Resistivity of silver wire, 
Current density of the wire, 
We need to find the magnitude of the electric field inside the wire. The relationship between electric field and the current density is given by :


E = 0.0636 V/m
or
E = 0.064 V/m
So, the magnitude of electric field inside the wire is 0.064 V/m. Hence, this is the required solution.