1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
13

The net external force on the propeller of a 3.8 kg model airplane is 8.2 N forward.

Physics
1 answer:
monitta3 years ago
8 0

Answer:

<h3>The answer is 2.16 m/s²</h3>

Explanation:

The acceleration of an object given it's mass and the force acting on it can be found by using the formula

a =  \frac{f}{m}  \\

f is the force

m is the mass

From the question we have

a =  \frac{8.2}{3.8}  \\  = 2.157894736...

We have the final answer as

<h3>2.16 m/s²</h3>

Hope this helps you

You might be interested in
A tungsten wire has resistance R at 20°C. A second tungsten wire at 20°C has twice the length and half the cross-sectional area
Bad White [126]
The resistance is 4 times the resistance of the first wire. the formula is R = p*l/A with p being resistivity, l length and A area. So if you double length and half area, which botv result in more resistance, you get p*2/0.5 or 4 (p can be abandoned because it is the same. We take standard length and area as 1)
6 0
3 years ago
3. Do Newton's Laws of Motion apply to a Water Spout? If so, how?
PSYCHO15rus [73]
Yes it’s spills out becasue bucket
6 0
3 years ago
2. An athlete of average size is hanging from the end of a 20 m long rope, which has a mass of 4 kg and is attached to a hook in
a_sh-v [17]

Answer:

  t = 0.319 s

Explanation:

With the sudden movement of the athlete a pulse is formed that takes time to move along the rope, the speed of the rope is given by

             v = √T/λ

Linear density is

           λ = m / L

           λ = 4/20

           λ = 0.2 kg / m

The tension in the rope is equal to the athlete's weight, suppose it has a mass of m = 80 kg

           T = W = mg

           T = 80 9.8

           T = 784 N

The pulse rate is

          v = √(784 / 0.2)

          v = 62.6 m / s

The time it takes to reach the hook can be searched with kinematics

          v = x / t

          t = x / v

          t = 20 / 62.6

          t = 0.319 s

7 0
3 years ago
What does the object below model?
harina [27]

Answer:  c

Explanation: it is c because i used my brain to answer it

3 0
2 years ago
Suppose a cart with no fans has a starting velocity of 2 m/s. What will be the velocity of the cart when it reaches the wall?
Roman55 [17]

Answer:

less than stating velocity due to friction and air resistance.

Explanation:

3 0
3 years ago
Other questions:
  • Which is larger, the Sun's pull on Earth or Earth's pull on the Sun?
    15·1 answer
  • 99 POINTS PLEASE HELP
    6·2 answers
  • Jenny and Alyssa are members of the cross-country team. On a training run, Jenny starts off and runs at a con-stant 3.8 m/s. Aly
    13·1 answer
  • Which one of the following statements concerning kinetic energy is true? a The kinetic energy of an object always has a positive
    10·1 answer
  • Tranh slowed his skateboard as he
    11·1 answer
  • 13. A lever does 5.0 J of work on a 0.10-kg ball bearing in a pinball machine. The ball's
    11·1 answer
  • what is the electrical potential at the surface of gold nucleus? The radius of a gold atom is 6.6*10​
    15·1 answer
  • A rock is thrown downward from the top of a 36.2-m-tall tower with an initial speed of 13 m/s. Assuming negligible air resistanc
    9·1 answer
  • A voltage is applied to a resistor,
    15·1 answer
  • A weight of 200 n is hung from a spring with a spring constant of 2500 n/m and lowered slowly. How much will the spring stretch?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!