Answer:
The sum of all forces for the two objects with force of friction F and tension T are:
(i) m₁a₁ = F
(ii) m₂a₂ = T - F
1) no sliding infers: a₁ = a₂= a
The two equations become:
m₂a = T - m₁a
Solving for a:
a = T / (m₁+m₂) = 2.1 m/s²
2) Using equation(i):
F = m₁a = 51.1 N
3) The maximum friction is given by:
F = μsm₁g
Using equation(i) to find a₁ = a₂ = a:
a₁ = μs*g
Using equation(ii)
T = m₁μsg + m₂μsg = (m₁ + m₂)μsg = 851.6 N
4) The kinetic friction is given by: F = μkm₁g
Using equation (i) and the kinetic friction:
a₁ = μkg = 6.1 m/s²
5) Using equation(ii) and the kinetic friction:
m₂a₂ = T - μkm₁g
a₂ = (T - μkm₁g)/m₂ = 12.1 m/s²
Answer: work = 1,305kJ
Explanation:
angle= 30°
force= 1,500N
distance= 1,000m
The formula for work is : Work= force x distance, however there is an angle of 30° between the direction of force applied and the direction of motion, therefore force must be decomposed to its value on the horizontal axis which is the direction of motion by using the cosine of the very angle.
W= F×cos(α)×D
W= 1,500×cos (30)×1,000
W= 1,305kJ ( kilojoules)
Wavelength = speed / frequency
(345 m/s) / (20,000 Hz) = 0.017 m