The relationship between the period of an oscillating spring and the attached mass determines the ratio of the period to
.
Response:
- The ratio of the period to
is always approximately<u> 2·π : 1</u>
<u />
<h3>How is the value of the ratio of the period to

calculated?</h3>
Given:
The relationship between the period, <em>T</em>, the spring constant <em>k</em>, and the
mass attached to the spring <em>m</em> is presented as follows;

Therefore, the fraction of of the period to
, is given as follows;

2·π ≈ 6.23
Therefore;

Which gives;
- The ratio of the period to
is always approximately<u> 2·π : 1</u>
Learn more about the oscillations in spring here:
brainly.com/question/14510622
Answer:
Angle of reflection of light is 34 degree
Explanation:
As per law of reflection of light we know that
angle of incidence of light = angle of reflection of light
So here we know that
angle of incidence on the surface of oil is given as

so we know that

so here we can say that reflection angle of light will be same as angle of incidence

Answer: Maybe he has the heater on
Explanation: If there is that much temperature then it has to be from something heated.
Answer:
trips Hawkins founded electronic arts
We will first convert lb to grams and in³ to milliliters.
350 lb : 2.205 = 158.75733 kg = 158,757.33 grams
1.3 · 10^4 in³ = 13,000 in³ = 13,000 · 0.016387064 = 213.031 liters
213.031 liters · 1,000 = 213,031 milliliters
Density = m / V = 158,753.33 g / 213,031 ml = 0.7452 g/ ml
Answer: A block of material will float.