The period is simply the inverse of the frequency, therefore:
T = 1 / f
T = 1 / 775 Hz
T = 0.001290 s → possible answer
T = 1.29 × 10⁻³ s → possible answer
T = 1.29 ms → possible answer
(1) The linear acceleration of the yoyo is 3.21 m/s².
(2) The angular acceleration of the yoyo is 80.25 rad/s²
(3) The weight of the yoyo is 1.47 N
(4) The tension in the rope is 1.47 N.
(5) The angular speed of the yoyo is 71.385 rad/s.
<h3> Linear acceleration of the yoyo</h3>
The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.
∑τ = Iα
rT - Rf = Iα
where;
- I is moment of inertia
- α is angular acceleration
- T is tension in the rope
- r is inner radius
- R is outer radius
- f is frictional force
rT - Rf = Iα ----- (1)
T - f = Ma -------- (2)
a = Rα
where;
- a is the linear acceleration of the yoyo
Torque equation for frictional force;

solve (1) and (2)

since the yoyo is pulled in vertical direction, T = mg 
<h3>Angular acceleration of the yoyo</h3>
α = a/R
α = 3.21/0.04
α = 80.25 rad/s²
<h3>Weight of the yoyo</h3>
W = mg
W = 0.15 x 9.8 = 1.47 N
<h3>Tension in the rope </h3>
T = mg = 1.47 N
<h3>Angular speed of the yoyo </h3>
v² = u² + 2as
v² = 0 + 2(3.21)(1.27)
v² = 8.1534
v = √8.1534
v = 2.855 m/s
ω = v/R
ω = 2.855/0.04
ω = 71.385 rad/s
Learn more about angular speed here: brainly.com/question/6860269
#SPJ1
PART A)
As we know that energy of light depends on its wavelength and frequency as following formula

now we know that wavelength of blue light is less than the red light so here energy of blue light will be more
also we know that

so here if wavelength is smaller for blue light so its frequency will be high and the speed of both light will be same in same medium
PART B)
Since we know that frequency of blue light is more than red light as well as wavelength of blue light is less than the wavelength of blue light so here blue light will have more energy
When blue light and red light strike the metal surface then due to more energy of blue light it will release some loosely bonded electrons from metal surface which will contribute in current.
here if we increase the intensity of light then the number of photons that contain the blue light of certain energy will be more and that will contribute more current
So here quantification help as we know that due to quantization only certain frequency or energy will lead to eject electron so all colours will not give this current
Answer: hello question b is incomplete attached below is the missing question
a) attached below
b) V = 0.336 ft/s
Explanation:
Elongation ( Xo) = 16/ 7 feet
mass attached to 4-foot spring = 16 pounds
medium has 9/2 times instanteous velocity
<u>a) Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 2 ft/s</u>
The motion is an underdamped motion because the value of β < Wo
Wo = 3.741 s^-1
attached below is a detailed solution of the question