Answer:
a) b) d)
Explanation:
The question is incomplete. The Complete question might be
In an inertial frame of reference, a series of experiments is conducted. In each experiment, two or three forces are applied to an object. The magnitudes of these forces are given. No other forces are acting on the object. In which cases may the object possibly remain at rest? The forces applied are as follows: Check all that apply.
a)2 N; 2 N
b) 200 N; 200 N
c) 200 N; 201 N
d) 2 N; 2 N; 4 N
e) 2 N; 2 N; 2 N
f) 2 N; 2 N; 3 N
g) 2 N; 2 N; 5 N
h ) 200 N; 200 N; 5 N
For th object to remain at rest, sum of all forces must be equal to zero. Use minus sign to show opposing forces
a) 2+(-2)=0 here minus sign is to show the opposing firection of force
b) 200+(-200)=0
c) 200+(-201)
0
d) 2+2+(-4)=0
e) 2+2+(-2)
0
f) 2+2+(-3)
0; 2+(-2)+3
0
g) 2+2+(-5)
0; 2+(-2)+5
0
h)200 + 200 +(-5)
0; 200+(-200)+5
0
Answer:
Normal Conversation: i=106i0
i(dB)=60
Power saw a 3 feet: i=1011i0
i(dB)=110
Jet engine at 100 feet: i=1018i0
i(dB)=180
Explanation:
if these are the same as edge, then these are the answers! :)
Insomnia and night terrors
Answer:
The new voltage between the parallel plates of the capacitor is 18V, because for a constant electric field, doubling the space between the parallel capacitor plates, will also double the potential difference (voltage) between the plates.
Explanation:
ΔV = E*Δd
Where;
ΔV is the change in potential difference
Δd is the change in the distance between the parallel plates
E is the electric field potential.
Assuming a constant electric field; 
when the spacing between the capacitor plates is doubled, d₂ = 2d₁
v₂ = (v₁*d₂)/(d₁)
v₂ = (v₁*2d₁)/(d₁)
v₂ = 2v₁
v₂ = 2(9) = 18 V
Therefore, for a constant electric field, doubling the space between the parallel capacitor plates, will also double the potential difference (voltage).
Answer:
Nuclear Forces
Explanation:
Because strong nuclear forces work best within shorter distance.