Answer:
1) After adding 15.0 mL of the HCl solution, the mixture is before the equivalence point on the titration curve.
2) The pH of the solution after adding HCl is 12.6
Explanation:
10.0 mL of 0.25 M NaOH(aq) react with 15.0 mL of 0.10 M HCl(aq). Let's calculate the moles of each reactant.


There is an excess of NaOH so the mixture is before the equivalence point. When HCl completely reacts, we can calculate the moles in excess of NaOH.
NaOH + HCl ⇒ NaCl + H₂O
Initial 2.5 × 10⁻³ 1.5 × 10⁻³ 0 0
Reaction -1.5 × 10⁻³ -1.5 × 10⁻³ 1.5 × 10⁻³ 1.5 × 10⁻³
Final 1.0 × 10⁻³ 0 1.5 × 10⁻³ 1.5 × 10⁻³
The concentration of NaOH is:
![[NaOH]=\frac{1.0 \times 10^{-3} mol }{25.0 \times 10^{-3} L} =0.040M](https://tex.z-dn.net/?f=%5BNaOH%5D%3D%5Cfrac%7B1.0%20%5Ctimes%2010%5E%7B-3%7D%20mol%20%7D%7B25.0%20%5Ctimes%2010%5E%7B-3%7D%20L%7D%20%3D0.040M)
NaOH is a strong base so [OH⁻] = [NaOH].
Finally, we can calculate pOH and pH.
pOH = -log [OH⁻] = -log 0.040 = 1.4
pH = 14 - pOH = 14 - 1.4 = 12.6
mole is the standardized form of molarity
<u>Given:</u>
Initial velocity (v1) = 0 m/s
Final velocity (v2) = 30 m/s
Acceleration (a) = 6.1 m/s2
<u>To determine:</u>
The time (t) taken to reach the final speed
<u>Explanation:</u>
Use the relation:
Acceleration (a) = [final velocity(v2) - initial velocity (v1)]/time (t)
t = (v2-v1)/a = 30-0/6.1 = 4.92 s
Ans: Time taken is around 4.9 s
# moles = mass (g) / Mr (relative atomic mass)
# moles = 458 / ((23*2)+32+(16*4)
# moles= 458 / 142 = 3.2253521126760...
= 3.23 moles