Explanation:
The Holy Roman Empire (Latin: Sacrum Imperium Romanum; German: Heiliges Römisches Reich), also termed as the First Reich, was a multi-ethnic complex of territories in Western and Central Europe that developed during the Early Middle Ages and continued until its dissolution in 1806 during the Napoleonic Wars.[6] The largest territory of the empire after 962 was the Kingdom of Germany, though it also included the neighboring Kingdom of Bohemia and Kingdom of Italy, plus numerous other territories, and soon after the Kingdom of Burgundy was added. However, while by the end of the 15th century the Empire was still in theory composed of three major blocks – Italy, Germany, and Burgundy – in practice only the Kingdom of Germany remained, with the Burgundian territories lost to France and the Italian territories, ignored in the Imperial Reform, although formally part of the Empire, were splintered into numerous de facto independent territorial entities.[7][8][9][10] The external borders of the Empire did not change noticeably from the Peace of Westphalia – which acknowledged the exclusion of Switzerland and the Northern Netherlands, and the French protectorate over Alsace – to the dissolution of the Empire. By then, it largely contained only German-speaking territories, plus the Kingdom of Bohemia, the southern Netherlands and lands of Carniola. At the conclusion of the Napoleonic Wars in 1815, most of the Holy Roman Empire was included in the German Confederation.
in yr language:
Ang Holy Roman Empire (Latin: Sacrum Imperium Romanum; German: Heiliges Römisches Reich), na tinawag din bilang First Reich, ay isang multi-etniko na kumplikado ng mga teritoryo sa Kanluran at Gitnang Europa na d
We write DE = q+w, where DE is the internal energy change and q and w are heat and work, respectively.
(b)Under what conditions will the quantities q and w be negative numbers?
q is negative when heat flows from the system to the surroundings, and w is negative when the system does work on the surroundings.
As an aside: In applying the first law, do we need to measure the internal energy of a system? Explain.
The absolute internal energy of a system cannot be measured, at least in any practical sense. The internal energy encompasses the kinetic energy of all moving particles in the system, including subatomic particles, as well as the electrostatic potential energies between all these particles. We can measure the change in internal energy (DE) as the result of a chemical or physical change, but we cannot determine the absolute internal energy of either the initial or the final state. The first law allows us to calculate the change in internal energy during a transformation by calculating the heat and work exchanged between the system and its surroundings.
40% solution of glucose is where the solution contains, by weight, 40% glucose and 60% water.
Therefore, if the total weight of the solution is 250 g,
mass of the glucose (C6H12O6) = 250 g * 40% = 100 g
mass of water (H2O) = 250 g * 60% = 150 g
Mass of water can also be calculated by subtracting the weight of glucose from the total weight of the solution:
mass of water = 250g-100g = 150g.
Answer:
<h3>Don't know..</h3>
follow me and mark me brainliest