The boiling point of HF is higher than the boiling point of
, and it is higher than the boiling point of
.
<h3>What is the boiling point?</h3>
The boiling point is the temperature at which the pressure exerted by the surroundings upon a liquid is equalled by the pressure exerted by the vapour of the liquid.
has weak dispersion force attractions between its molecules, whereas liquid HF has strong ionic interactions between
and
ions.
Only London Forces are formed - Therefore more energy is required to break the intermolecular forces in HF than in the other hydrogen halides and so HF has a higher boiling point.
and
will only have intra-molecular attractions and there will be no hydrogen bonds present in them. As a result, their boiling point will be lower.
Hence, the boiling point of HF is higher than the boiling point of
, and it is higher than the boiling point of
.
Learn more about the boiling point:
brainly.com/question/25777663
#SPJ1
- The difference between single displacement reaction and double displacement reaction are:
Explanation:
in the chemical reaction an atom in a molecule is replaced by another atom forming the end product .this type of chemical reaction involved only two reactants for example zinc + copper sulphate give us copper sulphate + copper.double displacement reaction is the reaction in which two compounds react together to form two other compounds by mutual exchange of other ions is called double displacement reaction.this type of reaction is involved two or more than two reactants.for example AG and O3 + NaCl give us agcl + nano3
Hi, you've asked an incomplete question. Here's the diagram that completes the question.
Answer:
<u>(B) nonpolar covalent bonds</u>
Explanation:
This structure in the diagram rightly fits the description of a non-covalent bond because there is an equal sharing of electrons of Carbon (C) and Chlorine (Cl).
<em>Remember</em> too that these elements are in their solid-state, hence the CCl4 (carbon tetrachloride) molecules are held strongly together.
I think the correct answer from the choices listed above is the second option. When we say an object is hot, we are describing its thermal energy. It<span> is the </span>energy<span> that comes from heat. This heat is generated by the movement of tiny particles within an object. </span> Hope this answers the question.