Answer:
Surface 1 is blacktop, Surface 2 is gravel, and Surface 3 is ice.
Explanation:
Hope this helps! :]
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Answer:
1.7N
Explanation:
Force = kx
Where x = spring compression and
K = spring constant
K =85N/m
x = 2.0cm / 100
= 0.02m
Force = 85 x 0.02
= 1.7N
Answer:
B. A repulsive force of 8.0*10^3 N.
Explanation:
As we know by Coulomb's law that the electrostatic force between two charges is given as
here we know that
r = 3.0 m
now we have
since both charges are similar charges so they will repel each other by the force we calculated above so correct answer will be
B. A repulsive force of 8.0*10^3 N.