1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GrogVix [38]
3 years ago
8

5. Which of these affect the brightness of a bulb? Choose all that apply.* 6 po

Physics
1 answer:
schepotkina [342]3 years ago
7 0

Answer:

The voltage of the battery

You might be interested in
Which process produces the energy radiated by the star when it becomes a main sequence star?
inysia [295]
The process that produces the energy radiated by stars is nuclear fusion in the core.
For a star on the main sequence, it's the fusion of hydrogen nuclei into helium.
8 0
4 years ago
An infinite line of charge with linear density λ1 = 8.2 μC/m is positioned along the axis of a thick insulating shell of inner r
bixtya [17]

1) Linear charge density of the shell:  -2.6\mu C/m

2)  x-component of the electric field at r = 8.7 cm: 1.16\cdot 10^6 N/C outward

3)  y-component of the electric field at r =8.7 cm: 0

4)  x-component of the electric field at r = 1.15 cm: 1.28\cdot 10^7 N/C outward

5) y-component of the electric field at r = 1.15 cm: 0

Explanation:

1)

The linear charge density of the cylindrical insulating shell can be found  by using

\lambda_2 = \rho A

where

\rho = -567\mu C/m^3 is charge volumetric density

A is the area of the cylindrical shell, which can be written as

A=\pi(b^2-a^2)

where

b=4.7 cm=0.047 m is the outer radius

a=2.7 cm=0.027 m is the inner radius

Therefore, we have :

\lambda_2=\rho \pi (b^2-a^2)=(-567)\pi(0.047^2-0.027^2)=-2.6\mu C/m

 

2)

Here we want to find the x-component of the electric field at a point at a distance of 8.7 cm from the central axis.

The electric field outside the shell is the superposition of the fields produced by the line of charge and the field produced by the shell:

E=E_1+E_2

where:

E_1=\frac{\lambda_1}{2\pi r \epsilon_0}

where

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 8.7 cm = 0.087 m is the distance from the axis

And this field points radially outward, since the charge is positive .

And

E_2=\frac{\lambda_2}{2\pi r \epsilon_0}

where

\lambda_2=-2.6\mu C/m = -2.6\cdot 10^{-6} C/m

And this field points radially inward, because the charge is negative.

Therefore, the net field is

E=\frac{\lambda_1}{2\pi \epsilon_0 r}+\frac{\lambda_2}{2\pi \epsilon_0r}=\frac{1}{2\pi \epsilon_0 r}(\lambda_1 - \lambda_2)=\frac{1}{2\pi (8.85\cdot 10^{-12})(0.087)}(8.2\cdot 10^{-6}-2.6\cdot 10^{-6})=1.16\cdot 10^6 N/C

in the outward direction.

3)

To find the net electric field along the y-direction, we have to sum the y-component of the electric field of the wire and of the shell.

However, we notice that since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, this means that the net field produced by the wire along the y-direction is zero at any point.

We can apply the same argument to the cylindrical shell (which is also infinite), and therefore we find that also the field generated by the cylindrical shell has no component along the y-direction. Therefore,

E_y=0

4)

Here we want to find the x-component of the electric field at a point at

r = 1.15 cm

from the central axis.

We notice that in this case, the cylindrical shell does not contribute to the electric field at r = 1.15 cm, because the inner radius of the shell is at 2.7 cm from the axis.

Therefore, the electric field at r = 1.15 cm is only given by the electric field produced by the infinite wire:

E=\frac{\lambda_1}{2\pi \epsilon_0 r}

where:

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 1.15 cm = 0.0115 m is the distance from the axis

This field points radially outward, since the charge is positive . Therefore,

E=\frac{8.2\cdot 10^{-6}}{2\pi (8.85\cdot 10^{-12})(0.0115)}=1.28\cdot 10^7 N/C

5)

For this last part we can use the same argument used in part 4): since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, the y-component of the electric field is zero.

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

4 0
3 years ago
What is displacement divided by time
Gnoma [55]
That gives you the magnitude of velocity, but it doesn't handle
the directions that are involved.
8 0
3 years ago
Read 2 more answers
Question 5(Multiple Choice Worth 3 points) (05.01 LC) Complete the following statement. The universe is filled with millions of
pashok25 [27]

the answer is a: galaxies. galaxy clusters are groups of galaxies that like to hang out together out there in space. the milky way's own galaxy cluster is called the local group.

8 0
4 years ago
Read 2 more answers
ListenA bicycle and its rider have a combined mass of 80. kilograms and a speed of 6.0 meters per second. What is the magnitude
Setler [38]

Answer:

a) 1.2\times 10^2\ N

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

a = Acceleration

v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{0-6}{4}\\\Rightarrow a=-1.5\ m/s^2

The acceleration of the bicycle and rider is -1.5 m/s²

Force

F=ma\\\Rightarrow F=80\times -1.5\\\Rightarrow F=-120\ N=-1.2\times 10^2\ N

The magnitude of the average force needed to bring the bicycle and its rider to a stop is 1.2\times 10^2\ N

3 0
3 years ago
Other questions:
  • Like the filters falling through the air, a car on the freeway represents an object with a high Reynolds number traveling throug
    6·1 answer
  • Light in vacuum is incident on the surface of a slab of transparent material. In the vacuum the beam makes an angle of 39.9° wit
    8·1 answer
  • Can we use a clinical thermometer to measure the temperature of a candle flame​
    5·1 answer
  • Hoofed animals have the least maneuverable digits. What are some positives to having hoofs instead of hands and feet with finger
    11·1 answer
  • The probability that a battery will last 10 hr or more is 0.8, and the probability that it will last 15 hr or more is 0.11. Give
    15·1 answer
  • If the box weighs 40 newtons and is lifted a distance of 2 meters, how much work is done on the box?
    5·1 answer
  • The idea that species change over time is called
    8·2 answers
  • QUESTION 23
    9·1 answer
  • Light energy from the Sun reaches an ocean beach, where people are
    8·1 answer
  • A 10.-newton force to the east acts on an object for 0.010 second. What force to the east, acting on the object for 0.050 second
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!